

Running an Application from Internal Flash Memory on the
TMS320F28xxx DSP

David M. Alter DSP Applications - Semiconductor Group

ABSTRACT

Several special requirements exist for running an application from on-chip flash memory
on the TMS320F28xxx DSP. These requirements generally do not manifest themselves
during development in RAM since the Code Composer Studio™ debugger can mask
problems associated with initialized sections and how they are linked to memory. This
application report covers the requirements needed to properly configure application
software for execution from on-chip flash memory. Requirements for both DSP/BIOS™
and non-DSP/BIOS projects are presented. Some performance considerations and
techniques are also discussed. Example code projects are included that run from on-chip
flash on the eZdspF2812™, eZdspF2808, and eZdspF28335 development boards. Code
examples that run from internal RAM are also provided for completeness. These code
examples provide a starting point for code development, if desired.

Project collateral and source code discussed in this application report can be downloaded
from the following URL: http://www-s.ti.com/sc/techlit/spra958.zip.

Note that the issues discussed in this application report apply directly to current members
of the TMS320F28xxx DSP family, specifically: F2810, F2811, F2812, F2801, F2801-60,
F2802, F2802-60, F2806, F2808, F2809, F28015, F28016, F28044, F28232, F28234,
F28235, F28332, F28334, and F28335 devices. Applicability to future devices in the
TMS320F28xxx family, although quite likely, is not guaranteed. In addition, the code and
techniques presented in this application report for DSP/BIOS projects were developed on
Code Composer Studio v3.3.81.5 using C-compiler v5.1.0 and DSP/BIOS v5.33. It is
always suggested that the reader upgrade to the latest version. However, keep in mind
that future versions of DSP/BIOS may have differences that make some of the items
discussed in this report unnecessary (although in all likelihood backwards compatibility will
be maintained, so that the techniques discussed here should still work).

Finally, this application report does not provide a tutorial on writing and building code for
the F28xxx DSP. It is assumed that the reader already has at least the main framework of
their application code running from RAM, probably using the Code Composer Studio
debugger to perform the code download. This report only identifies the special items that
must be considered when moving the application into on-chip flash memory.

Code Composer Studio and DSP/BIOS are trademarks of Texas Instruments.
eZdsp is a trademark of Spectrum Digital Incorporated.
Trademarks are the property of their respective owners.

Application Report
SPRA958H – September 2008

1

SPRA958H

2 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

Contents
1 Introduction ...3
2 Creating a User Linker Command File ..3

2.1 Non-DSP/BIOS Projects..3
2.2 DSP/BIOS Projects..4

3 Where to Link the Sections ..4
3.1 Non-DSP/BIOS Projects..5
3.2 DSP/BIOS Projects..7

4 Copying Sections from Flash to RAM ...9
4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only) ...9
4.2 Copying the .hwi_vec Section (DSP/BIOS projects only)..10
4.3 Copying the .trcdata Section (DSP/BIOS projects only)..10
4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects)12
4.5 Maximizing Performance by Executing Time-critical Functions from RAM14
4.6 Maximizing Performance by Linking Critical Global Constants to RAM15

4.6.1 Method 1: Running All Constant Arrays from RAM ...15
4.6.2 Method 2: Running a Specific Constant Array from RAM..18

5 Programming the Code Security Module Passwords..19
6 Executing Your Code from Flash after a DSP Reset..23
7 Disabling the Watchdog Timer During C-Environment Boot ..25
8 C-Code Examples..27

8.1 General Overview..27
8.2 Directory Structure and File Utilizations ..28
8.3 Additional Information..35

References...38
Revision History..39

Figures
Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool11
Figure 2. Specifying the Link Order In Code Composer Studio...17
Figure 3. DSP/BIOS MEM Properties for CSM Password Locations ...22
Figure 4. DSP/BIOS MEM Properties for CSM Reserved Locations ..22
Figure 5. DSP/BIOS MEM Properties for Jump to Flash Entry Point...24

Tables
Table 1. Section Linking in Non-DSP/BIOS Projects (Large memory model)6
Table 2. Section Linking In DSP/BIOS Projects (Large Memory Model)......................................7
Table 3. Example Code File Directories..28
Table 4. F2812 Example Code File Inventory and Utilization..29
Table 5. F2808 Example Code File Inventory and Utilization..31
Table 6. F28335 Example Code File Inventory and Utilization..33

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 3

1 Introduction
The TMS320F28xxx DSP family has been designed for standalone operation in embedded
controller applications. The on-chip flash usually eliminates the need for external non-volatile
memory and a host processor from which to bootload. Configuring an application to run from
flash memory is a relatively easy matter provided that one follow a few simple steps. This report
covers the major concerns and steps needed to properly configure application software for
execution from internal flash memory. Requirements for both DSP/BIOS and non-DSP/BIOS
projects are presented. Some performance considerations and techniques are also discussed.

Note that the issues discussed in this application report apply directly to current members
of the TMS320F28xxx DSP family. The term F28xxx here, and throughout the remainder
of this document, refers specifically to the F2810, F2811, F2812, F2801, F2801-60,
F2802, F2802-60, F2806, F2808, F2809, F28015, F28016, F28044, F28232, F28234,
F28235, F28332, F28334, and F28335 devices. Applicability to future devices in the
TMS320F28xxx family, although quite likely, is not guaranteed. In addition, the code and
techniques presented in this application report for DSP/BIOS projects were developed on
Code Composer Studio v3.3.81.5 using C-compiler v5.1.0 and DSP/BIOS v5.33. It is
always suggested that the reader upgrade to the latest version. However, keep in mind
that future versions of DSP/BIOS may have differences that make some of the items
discussed in this report unnecessary (although in all likelihood backwards compatibility will
be maintained, so that the techniques discussed here should still work).

Finally, this application report does not provide a tutorial on writing and building code for the
F28xx DSP. It is assumed that the reader already has at least the main framework of their
application code running from RAM, probably using the CCS debugger to perform the code
download. This report only identifies the special items that must be considered when moving the
application into on-chip flash memory.

2 Creating a User Linker Command File

2.1 Non-DSP/BIOS Projects

In non-DSP/BIOS applications, the user linker command file will be where most memory is
defined, and where the linking of most sections is specified. The format of this file is no different
than the linker command file you are currently using to run your application from RAM. The
difference will be in where you link the sections (to be discussed in Section 3). More information
on linker command files can be found in reference [9]. The non-DSP/BIOS code projects that
accompany this application report contain linker command files that can be used for reference.

The DSP281x, DSP280x, DSP2804x, and DSP2833x peripheral header files contain linker
command files named DSP281x_Headers_nonBIOS.cmd, DSP280x_Headers_nonBIOS.cmd,
DSP2804x_Headers_nonBIOS.cmd, and DSP2833x_Headers_nonBIOS.cmd respectively (see
references [15-18]). These files contains linker MEMORY and SECTIONS declarations for
linking the peripheral register structures. Simply add the appropriate one of these linker
command files to your code project in addition to your user linker command file.

SPRA958H

4 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

In general, the order of the linker command files is unimportant since during a project build, CCS
evaluates the MEMORY section of every linker command file before evaluating the SECTIONS
section of any linker command file. This ensures that all memories are defined before linking
any sections to those memories. However, advanced users may need manual control over the
order of linker command file evaluation in some rare situations. This can be specified within
CCS on the Project → Build_Options, Link_Order tab.

2.2 DSP/BIOS Projects

The DSP/BIOS configuration tool generates a linker command file that specifies how to link all
DSP/BIOS generated sections, and by default all C-compiler generated sections. When running
your application from RAM, this linker command file may be the only one in use. However, when
executing from flash memory, there will likely be a need to generate and link one or more user
defined sections. In particular, any code that configures the on-chip flash control registers (e.g.
flash wait-states) cannot execute from flash. In addition, one may want to run certain time
critical functions from RAM (instead of flash) to maximize performance. A user linker command
file must be created to handle these user defined sections.

CCS supports having more than one linker command file in a project. Hence, all one needs to
do is add both the user linker command file, as well as the DSP/BIOS generated linker
command file, to their project. In general, the order of the linker command files is unimportant
since during a project build, CCS evaluates the MEMORY section of every linker command file
before evaluating the SECTIONS section of any linker command file. This ensures that all
memories are defined before linking any sections to those memories. However, advanced users
may need manual control over the order of linker command file evaluation in some rare
situations (for example, to preempt and override DSP/BIOS linkage of a section). This can be
specified within CCS on the Project → Build_Options, Link_Order tab.

The DSP281x, DSP280x, DSP2804x, and DSP2833x peripheral header files contain linker
command files named DSP281x_Headers_nonBIOS.cmd, DSP280x_Headers_nonBIOS.cmd,
DSP2804x_Headers_nonBIOS.cmd, and DSP2833x_Headers_nonBIOS.cmd respectively (see
references [15-18]). These file contains linker MEMORY and SECTIONS declarations for linking
the peripheral register structures. Simply add the appropriate one of these linker command files
to your code project as well.

3 Where to Link the Sections
Two basic section types exist: initialized, and uninitialized. Initialized sections must contain valid
values at device power-up. For example, code and constants are found in initialized sections.
When designing a stand-alone embedded system with the F28xxx DSP (e.g., no emulator or
debugger in use, no host processor present to perform bootloading), all initialized sections must
be linked to non-volatile memory (e.g., on-chip flash). An uninitialized section does not contain
valid values at device power-up. For example, variables are found in uninitialized sections.
Code will write values to the variable locations during code execution. Therefore, uninitialized
sections must be linked to volatile memory (e.g., RAM).

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 5

It is suggested that the -w linker option be invoked. The -w option will produce a warning if the
linker encounters any sections in your project that have not been explicitly specified for linking in
a linker command file. When the linker encounters an unspecified section, it uses a default
allocation algorithm to link the section into memory (it will link the section to the first defined
memory with enough available free space). This is almost always risky, and can lead to
unreliable and unpredictable code behavior. The -w option will identify any unspecified sections
(e.g., those accidentally forgotten by the user) so that the user can make the necessary addition
to the appropriate linker command file. The -w option can be selected in CCS on the Project →
Build_Options menu, Linker tab, select the Advanced category, and then check the -w option
box. It is checked by default for new projects.

CAUTION:
It is important that the large memory model be used with the C-compiler (as
opposed to the small memory model). Small memory model requires certain
initialized sections to be linked to non-volatile memory in the lower 64Kw of
addressable space. However, no flash memory is present in this region on any
F28xxx devices, and this will likely be true for future F28xxx devices as well.
Therefore, large memory model should be used. In Code Composer Studio, the
large memory model is on the Project → Build_Options menu. Select the
Compiler tab, choose the Advanced category, and check the -ml option box. For
non-DSP/BIOS projects, one should include the large memory model C-compiler
runtime support library into their code project. For the fixed-point devices, this
is library rts2800_ml.lib (as opposed to rts2800.lib, which is for the small
memory model). For the floating-point devices, this is file rts2800_fpu32.lib for
plain C code, or rts2800_fpu32_eh.lib for C++ code (there are no small memory
model libraries for the floating-point devices). For DSP/BIOS projects,
DSP/BIOS will take care of including the required library. The user should not
include any runtime support library in a DSP/BIOS project.

3.1 Non-DSP/BIOS Projects

The compiler uses a number of specific sections. These sections are the same whether you are
running from RAM or flash. However, when running a program from flash, all initialized sections
must be linked to non-volatile memory, whereas all uninitialized sections must be linked to
volatile memory. Table 1 shows where to link each compiler generated section on the F28xxx
DSP. Information on the function of each section can be found in reference [5]. Any user
created initialized section should be linked to flash (e.g., those sections created using the
CODE_SECTION compiler pragma), whereas any user created uninitialized sections should be
linked to RAM (e.g., those sections created using the DATA_SECTION compiler pragma).

SPRA958H

6 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

Table 1. Section Linking in Non-DSP/BIOS Projects (Large memory model)

Section Name Where to Link
.cinit Flash

.cio RAM

.const Flash

.econst Flash

.pinit Flash

.switch Flash

.text Flash

.bss RAM

.ebss RAM

.stack Lower 64Kw RAM

.sysmem RAM

.esysmem RAM

.reset RAM1

Table 1 Notes:
1 The .reset section contains nothing more than a 32-bit interrupt vector that points to the
C-compiler boot function in the runtime support library (the _c_int00 routine). It generally is not
used. Instead, the user typically creates their own branch instruction to point to the starting point
of the code (see Sections 6 and 7). When not in use, the .reset section should be omitted from
the code build by using a DSECT modifier in the linker command file. For example:

/**
* User's linker command file
**/

SECTIONS
{
 .reset : > FLASH, PAGE = 0, TYPE = DSECT
}

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 7

3.2 DSP/BIOS Projects

The memory section manager in the DSP/BIOS configuration tool allows one to specify where to
link the various DSP/BIOS and C-compiler generated sections. Table 2 indicates where the
sections shown on each tab of the memory section manager should be linked (i.e., RAM or
FLASH). Note that this information has been tabulated specifically for DSP/BIOS v5.33. Later
versions of DSP/BIOS, although quite likely to be the same, may have some differences. The
reader should check the version they are using and simply be aware of potential differences
while proceeding. To check your DSP/BIOS version from within CCS, go to the Help → About
menu, click the Component_Manager button, and view the TMS320C28XX DSP/BIOS version
under the Target_Content_(DSP/BIOS) tree.

Table 2. Section Linking In DSP/BIOS Projects (Large Memory Model)

Memory Section
Manager TAB

Section Name Where to Link

Segment for DSP/BIOS Objects RAM
General

Segment for malloc()/free() RAM

Argument Buffer Section (.args) RAM

Stack Section (.stack) Lower 64Kw RAM

DSP/BIOS Init Tables (.gblinit) Flash

TRC Initial Values (.trcdata) RAM1

DSP/BIOS Kernel State (.sysdata) RAM

BIOS Data

DSP/BIOS Conf Sections (*.obj) RAM

BIOS Code Section (.bios) Flash

Startup Code Section (.sysinit) Flash

Function Stub Memory (.hwi) Flash

Interrupt Service Table Memory (.hwi_vec) PIEVECT RAM2

BIOS Code

RTDX Text Segment (.rtdx_text) Flash

Text Section (.text) Flash

Switch Jump Tables (.switch) Flash

C Variables Section (.bss) RAM

C Variables Section (.ebss) RAM

Data Initialization Section (.cinit) Flash

Compiler Sections
C Function Initialization Table (.pinit) Flash

SPRA958H

8 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

Constant Section (.econst) Flash

Constant Section (.const) Flash

Data Section (.data) Flash

Data Section (.cio) RAM

Load Address - BIOS Code Section (.bios) Flash3

Load Address - Startup Code Section (.sysinit) Flash3

Load Address - DSP/BIOS Init Tables (.gblinit) Flash3

Load Address - TRC Initial Value (.trcdata) Flash1

Load Address - Text Section (.text) Flash3

Load Address - Switch Jump Tables (.switch) Flash3

Load Address - Data Initialization Section (.cinit) Flash3

Load Address - C Function Initialization Table (.pinit) Flash3

Load Address - Constant Section (.econst) Flash3

Load Address - Constant Section (.const) Flash3

Load Address - Data Section (.data) Flash3

Load Address - Function Stub Memory (.hwi) Flash3

Load Address - Interrupt Service Table Memory (.hwi_vec) Flash2

Load Address

Load Address - RTDX Text Segment (.rtdx_text) Flash3

Table 2 Notes:
1 The .trcdata section must be copied by the user from its load address (specified on the
Load_Address tab) to its run address (specified on the BIOS_Data tab) at runtime. See Section
4.3 for details on performing this copy.
2 The PIEVECT RAM is a specific block of RAM associated with the Peripheral Interrupt
Expansion (PIE) peripheral. On current F28xxx devices, the PIE RAM is a 256x16 block starting
at address 0x000D00 in data space. For other devices, confirm the address in the device
datasheet. The memory section manager in the DSP/BIOS configuration tool should already
have a pre-defined memory named PIEVECT. The .hwi_vec section must be copied by the user
from its load address (specified on the memory section manager Load_Address Tab) to its run
address (specified on the memory section manager BIOS_Code Tab) at runtime. See Section
4.2 for details on performing this copy.
3 The specific flash memory selected as the load address for this section should be the same
flash memory selected previously as the run address for the section (e.g., on the BIOS_Data,
BIOS_Code, or Compiler_Sections tab).

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 9

4 Copying Sections from Flash to RAM

4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only)

The Peripheral Interrupt Expansion (PIE) module manages interrupt requests on F28xxx
devices. At power-up, all interrupt vectors must be located in non-volatile memory (i.e., flash),
but copied to the PIEVECT RAM as part of the device initialization procedure in your code. The
PIEVECT RAM is a specific block of RAM, which on current F28xxx devices is a 256x16 block
starting at address 0x000D00 in data space.

Several approaches exist for linking the interrupt vectors to flash and then copying them to the
PIEVECT RAM at runtime. One approach is to create a constant C-structure of function pointers
that contains all 128 32-bit vectors. If using the DSP28xx peripheral structures (see references
[15-18]), such a structure, called PieVectTableInit, has already been created in the
corresponding file DSP28xxx_PieVect.c. Since this structure is declared using the const type
qualifier, it will be placed in the .econst section by the compiler. One simply needs to copy this
structure to the PIEVECT RAM at runtime. The C-compiler runtime support library contains a
memory copy function called memcpy() that can be used to perform the copy task. This
function is used as follows:

/**
* User's C-source file
**/

/**
* NOTE: This function assumes use of the DSP28xxx Peripheral Header
* File structures (see References [15-18]).
**/

#include <string.h>

void main(void)
{
/*** Initialize the PIE_RAM ***/
 PieCtrlRegs.PIECTRL.bit.ENPIE = 0; // Disable the PIE
 asm(" EALLOW"); // Enable EALLOW protected register access
 memcpy((void *)0x000D00, &PieVectTableInit, 256);
 asm(" EDIS"); // Disable EALLOW protected register access
}

The above example uses a hard coded address for the start of the PIE RAM, specifically
0x000D00. If this is objectionable (as hard coded addresses are not good programming
practice), one can use a DATA_SECTION pragma to create an uninitialized dummy variable,
and link this variable to the PIE RAM. The name of the dummy variable can then be used in
place of the hard coded address. For example, when using any of the DSP28xxx device
peripheral structures, an uninitialized structure called PieVectTable is created and linked over
the PIEVECT RAM. The memcpy() instruction in the previous example can be replaced by:

 memcpy(&PieVectTable, &PieVectTableInit, 256);

Note that the length is 256. The memcpy function copies 16-bit words (as opposed to copying
128 32-bit words).

SPRA958H

10 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

4.2 Copying the .hwi_vec Section (DSP/BIOS projects only)

The DSP/BIOS .hwi_vec section contains the interrupt vectors, and must be loaded to flash but
run from RAM. The user is responsible for copying this section from its load address to its run
address. This is typically done in main(). The DSP/BIOS configuration tool generates global
symbols that can be accessed by code in order to determine the load address, run address, and
length of the .hwi_vec section. These symbol names are:

 hwi_vec_loadstart

 hwi_vec_loadend

 hwi_vec_runstart

Each symbol is self-explanatory from its name. Note that the symbols are not pointers, but
rather symbolically reference the 16-bit data value found at the corresponding location (i.e., start
or end) of the section. The C-compiler runtime support library contains a memory copy function
called memcpy() that can be used to perform the copy task. A C-code example of how to use
this function to perform the section copy follows. Note that the PIEVECT RAM is EALLOW
protected. Therefore, inline EALLOW and EDIS assembly instructions must bracket the memory
copy of the .hwi_vec section, as shown.

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int hwi_vec_loadstart;
extern unsigned int hwi_vec_loadend;
extern unsigned int hwi_vec_runstart;

void main(void)
{
/*** Initialize the .hwi_vec section ***/
 asm(" EALLOW"); /* Enable EALLOW protected register access */

 memcpy(&hwi_vec_runstart,
 &hwi_vec_loadstart,
 &hwi_vec_loadend - &hwi_vec_loadstart);

 asm(" EDIS"); /* Disable EALLOW protected register access */
}

4.3 Copying the .trcdata Section (DSP/BIOS projects only)

The DSP/BIOS .trcdata sections must be loaded to flash, but run from RAM. The user is
responsible for copying this section from its load address to its run address. However, unlike the
.hwi_vec section, the copying of .trcdata must be performed prior to main(). This is because
DSP/BIOS modifies the contents of .trcdata during DSP/BIOS initialization (which also occurs
prior to main()).

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 11

The DSP/BIOS configuration tool provides for a user initialization function which can be utilized
to perform the .trcdata section copy prior to both main() and DSP/BIOS initialization. This can
be found in the project configuration file under System - Global Settings Properties, as shown in
Figure 1.

Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool

What remains is to create the user initialization function. The DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address,
run address, and length of each section. These symbol names are:

 trcdata_loadstart

 trcdata_loadend

 trcdata_runstart

Each symbol is self-explanatory from its name. Note that the symbols are not pointers, but
rather symbolically reference the 16-bit data value found at the corresponding location (i.e., start
or end) of the section. The C-compiler runtime support library contains a memory copy function
called memcpy() that can be used to perform the copy task. A C-code example of a user init
function that performs the .trcdata section copy follows.

Check this box Enter your
function name
here (note the
leading
underscore)

SPRA958H

12 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int trcdata_loadstart;
extern unsigned int trcdata_loadend;
extern unsigned int trcdata_runstart;

void UserInit(void)
{
/*** Initialize the .trcdata section before main() ***/
 memcpy(&trcdata_runstart,
 &trcdata_loadstart,
 &trcdata_loadend - &trcdata_loadstart);
}

4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects)

The initialization code for the flash control registers, FOPT, FPWR, FSTDBYWAIT,
FACTIVEWAIT, FBANKWAIT, and FOTPWAIT, cannot be executed from the flash memory or
unpredictable results may occur. Therefore, the initialization function for the flash control
registers must be copied from flash (its load address) to RAM (its run address) at runtime.

CAUTION:
The flash control registers are protected by the Code Security Module (CSM). If
the CSM is secured, you must run the flash register initialization code from CSM
secured RAM (e.g. L0 through L3 SARAM, see the device data sheet for your
specific device) or the initialization code will be unable to access the flash
registers. Note that the CSM is always secured at device reset, although the
ROM bootloader will unlock it if you are using dummy passwords of 0xFFFF.

The CODE_SECTION pragma of the C compiler can be used to create a separately linkable
section for the flash initialization function. For example, suppose the flash register configuration
is to be performed in the C function InitFlash(), and it is desired to place this function into a
linkable section called secureRamFuncs. The following C-code example shows proper use of
the CODE_SECTION pragma along with an example configuration of the flash registers:

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 13

/**
* User's C-source file
**/

/**
* NOTE: The InitFlash() function shown here is just an example of an
* initialization for the flash control registers. Consult the device
* datasheet for production wait state values and any other relevant
* information. Wait-states shown here are specific to current F280x
* devices operating at 100 MHz.
* NOTE: This function assumes use of the DSP28xxx Peripheral Header
* File structures (see References [15-18]).
**/

#pragma CODE_SECTION(InitFlash, "secureRamFuncs")
void InitFlash(void)
{
 asm(" EALLOW"); // Enable EALLOW protected register access
 FlashRegs.FPWR.bit.PWR = 3; // Flash set to active mode
 FlashRegs.FSTATUS.bit.V3STAT = 1; // Clear the 3VSTAT bit
 FlashRegs.FSTDBYWAIT.bit.STDBYWAIT = 0x01FF; // Sleep to standby cycles
 FlashRegs.FACTIVEWAIT.bit.ACTIVEWAIT = 0x01FF; // Standby to active cycles
 FlashRegs.FBANKWAIT.bit.RANDWAIT = 3; // F280x Random access wait states
 FlashRegs.FBANKWAIT.bit.PAGEWAIT = 3; // F280x Paged access wait states
 FlashRegs.FOTPWAIT.bit.OTPWAIT = 5; // F280x OTP wait states
 FlashRegs.FOPT.bit.ENPIPE = 1; // Enable the flash pipeline
 asm(" EDIS"); // Disable EALLOW protected register access

/*** Force a complete pipeline flush to ensure that the write to the last register
 configured occurs before returning. Safest thing is to wait 8 full cycles. ***/

 asm(" RPT #6 || NOP");

} //end of InitFlash()

The section secureRamFuncs can then be linked using the user linker command file. This
section will require separate load and run addresses. Further, we will want to have the linker
generate some global symbols that can be used to determine the load address, run address,
and length of the section. This information is needed to perform the copy from the sections load
address to its run address. The user linker command file would appear as follows:

/**
* User's linker command file
**/

SECTIONS
{
/*** User Defined Sections ***/
secureRamFuncs: LOAD = FLASH, PAGE = 0
 RUN = SECURE_RAM, PAGE = 0
 RUN_START(_secureRamFuncs_runstart),
 LOAD_START(_secureRamFuncs_loadstart),
 LOAD_END(_secureRamFuncs_loadend)
}

SPRA958H

14 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

In this example, the memories FLASH and SECURE_RAM are assumed to have been defined
either in the MEMORY section of the user linker command file (for non-DSP/BIOS projects) or in
the memory section manager of the DSP/BIOS configuration tool (for DSP/BIOS projects). The
PAGE designation for these memories should match that of the memory definition. The above
example assumes both memories have been declared on PAGE 0 (program memory space).
The RUN_START, LOAD_START, and LOAD_END directives will generate global symbols with
the specified names for the corresponding addresses. Note the use of the leading underscore
on the global symbol definitions (e.g., _secureRamFuncs_runstart)

Finally, the section must be copied from flash to RAM at runtime. As in Sections 4.1 - 4.3, the
function memcpy() from the compiler runtime support library can be used:

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int secureRamFuncs_loadstart;
extern unsigned int secureRamFuncs_loadend;
extern unsigned int secureRamFuncs_runstart;

void main(void)
{
/* Copy the secureRamFuncs section */
 memcpy(&secureRamFuncs_runstart,
 &secureRamFuncs_loadstart,
 &secureRamFuncs_loadend - &secureRamFuncs_loadstart);

/* Initialize the on-chip flash registers */
 InitFlash();
}

4.5 Maximizing Performance by Executing Time-critical Functions from RAM

(DSP/BIOS and non-DSP/BIOS projects)

The on-chip RAM memory on current F28xxx devices provides code execution performance of
150 MIPS (millions of instructions per second) for 150 MHz devices, 100 MIPS for 100 MHz
devices, and 60 MIPS for 60 MHz devices. However, the on-chip flash memory on these
devices provides effective code execution performance that is slightly less: roughly 90 – 100
MIPS at 150 MHz, roughly 85 – 90 MIPS on 100 MHz devices, and roughly 55 MIPS on 60 MHz
devices. It may therefore be desirable to run certain time-critical or computationally demanding
routines from on-chip RAM. However, in a standalone embedded system, all code must initially
reside in non-volatile memory. Therefore, separate load and run addresses must be setup for
those functions running from RAM, and a copy must be performed to move them from the on-
chip flash to the RAM at runtime. To do this, apply the same procedure previously described in
Section 4.4.

Using the CODE_SECTION pragma, one can add multiple functions to the same linkable
section. The entire section can then be assigned to run from a particular RAM block, and the
user can copy the entire section to RAM all at once, as discussed in Section 4.4. If finer linking
granularity is required, separate section names can be created for each function.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 15

4.6 Maximizing Performance by Linking Critical Global Constants to RAM

(DSP/BIOS and non-DSP/BIOS projects)

Constants are those data structures declared using the C language const type modifier. The
compiler places all constants in the .econst section (large memory model assumed). While
special pipelining on current F28xxx devices accelerates effective flash performance for code
execution, accessing data constants located in the on-chip FLASH can take multiple cycles per
access. Typical flash wait-states will be 5 cycles on a 150 MHz device, 3 cycles on a 100 MHz
device, and 2 cycles on a 60 MHz device (see the device datasheet for flash wait-state
specifications). It may therefore be desirable to keep heavily accessed constants and constant
tables in on-chip RAM. However, a standalone embedded system requires that all initialized
data (e.g., constants) initially reside in non-volatile memory. Therefore, separate load and run
addresses must be setup for those constants you wish to access in RAM, and a copy must be
performed to move them from the on-chip flash to the RAM at runtime. Two different
approaches for accomplishing this will be presented.

4.6.1 Method 1: Running All Constant Arrays from RAM

This approach involves specifying separate load and run addresses for the entire .econst
section. The advantage of this approach is ease of use, while the disadvantage is excessive
RAM usage (there may be only a few constants that require high-speed access, but with this
method all constants are relocated into RAM).

4.6.1.1 Non-DSP/BIOS Projects

The same approach discussed in Section 4.4 can be used. Simply specify separate load and
run address for the .econst section in the user linker command file, and then add code to your
project to copy the entire .econst section to RAM at runtime. For example:

/**
* User's linker command file
**/

SECTIONS
{
.econst: LOAD = FLASH, PAGE = 0
 RUN = RAM, PAGE = 1
 RUN_START(_econst_runstart),
 LOAD_START(_econst_loadstart),
 LOAD_END(_econst_loadend)
}

SPRA958H

16 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int econst_loadstart;
extern unsigned int econst_loadend;
extern unsigned int econst_runstart;

void main(void)
{
/* Copy the .econst section */
 memcpy(&econst_runstart,
 &econst_loadstart,
 &econst_loadend - &econst_loadstart);
}

4.6.1.2 DSP/BIOS Projects

Although the DSP/BIOS configuration tool allows the specification of different load and run
addresses for the .econst section, it will not generate the code accessible labels that are
needed to perform the memory copy. Therefore, the user must preemptively link the .econst
section in the user linker command file before the DSP/BIOS generated linker command file is
evaluated. The user linker command file would appear as follows:

/**
* User's linker command file (DSP/BIOS Projects)
**/

SECTIONS
{
/*** Preemptively link the .econst section ***/
/* Must come before DSP/BIOS linker command file is evaluated */

.econst: LOAD = FLASH, PAGE = 0
 RUN = RAM, PAGE = 1
 RUN_START(_econst_runstart),
 LOAD_START(_econst_loadstart),
 LOAD_END(_econst_loadend)
}

To guarantee that the user linker command file is evaluated before the DSP/BIOS generated
linker command file during the project build, one must specify the link order in CCS. This is
done by clicking on Project → Build_Options, selecting the Link_Order tab, and then specifying
the appropriate order for the linker command files in question. Figure 2 shows an example of
this, where F2808_BIOS_flash.cmd is the name of the user linker command file, and
F2808_example_BIOS_flashcfg.cmd is the name of the DSP/BIOS generated linker command
file.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 17

Figure 2. Specifying the Link Order In Code Composer Studio

Note that since the DSP/BIOS generated linker command file will also attempt to link the .econst
section, the linker will give a warning stating "Multiple definitions of SECTION named '.econst'."
This warning can be safely ignored.

The .econst section can then be copied from its load address to its run address as follows:

SPRA958H

18 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int econst_loadstart;
extern unsigned int econst_loadend;
extern unsigned int econst_runstart;

void main(void)
{
/* Copy the .econst section */
 memcpy(&econst_runstart,
 &econst_loadstart,
 &econst_loadend - &econst_loadstart);
}

4.6.2 Method 2: Running a Specific Constant Array from RAM

(DSP/BIOS and non-DSP/BIOS projects)

This method involves selectively copying constants from flash to RAM at runtime. The
procedure to accomplish this is similar to that of Method 1, except that only selected constants
are placed in a named section and copied to RAM (rather than copying all constants to RAM).

Suppose for example that one wants to create a 5 word constant array called table[] to be run
from RAM. A DATA_SECTION pragmas used to place table[] in a user defined section called
ramconsts. The C-source file would appear as follows:

/**
* User's C-source file
**/

#pragma DATA_SECTION(table, "ramconsts")
const int table[5] = {1,2,3,4,5};

void main(void)
{

}

The section ramconsts is linked to load to flash but run from RAM using the user linker
command file, and global symbols are generated to facilitate the memory copy. The user linker
command file would appear as follows:

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 19

/**
* User's linker command file
**/

SECTIONS
{
/*** User Defined Sections ***/
ramconsts: LOAD = FLASH, PAGE = 0
 RUN = RAM, PAGE = 1
 LOAD_START(_ramconsts_loadstart),
 LOAD_END(_ramconsts_loadend),
 RUN_START(_ramconsts_runstart)
}

Finally, table[] must be copied from its load address to its run address at runtime:

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int ramconsts_loadstart;
extern unsigned int ramconsts_loadend;
extern unsigned int ramconsts_runstart;

void main(void)
{
/* Initialize the ramconsts section */
 memcpy(&ramconsts_runstart,
 &ramconsts_loadstart,
 &ramconsts_loadend - &ramconsts_loadstart);
}

5 Programming the Code Security Module Passwords
(DSP/BIOS and non-DSP/BIOS projects)

The CSM module on F28xxx devices provides protection against unwanted copying of your
software. On current F28xxx devices, the entire flash, the OTP memory, and the L0 through L3
SARAM blocks are secured by the CSM (the flash configuration registers are secured as well).
When secured, only code executing from secured memory can access data (read or write) in
other secured memory. Code executing from unsecured memory cannot access data in secured
memory. Detailed information on the CSM module can be found in references [6-8].

SPRA958H

20 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

The CSM uses a 128-bit password comprised of 8 individual 16-bit words. On current F28xxx
devices, these passwords are stored in the upper most 8 words of the flash (e.g., addresses
0x3F7FF8 through 0x3F7FFF on F281x, F280x, and F280xx devices, and addresses 0x33FFF8
through 0x33FFFF on F2833x devices). During development, it is recommended that dummy
passwords of 0xFFFF be used. When dummy passwords are used, only dummy reads of the
password locations are needed to unsecure the CSM. Placing dummy passwords into the
password locations is easy to do since 0xFFFF will be the state of these locations after the flash
is erased during flash programming. Users need only avoid linking any sections to the password
addresses in their code project, and the passwords will retain the 0xFFFF.

After development, one may want to use real passwords. In addition, to properly secure the
CSM module on current F28xxx devices, values of 0x0000 must be programmed into the 118
flash addresses beginning 120 words prior to the start of the CSM passwords, e.g., addresses
0x3F7F80 through 0x3F7FF5 on F281x, F280x, and F280xx devices, and addresses 0x33FF80
through 0x33FFF5 on F2833x devices (see references [1-3]). An easy way to accomplish both
of these tasks is with a little simple assembly language programming. The following example
assembly code file specifies the desired password values and places them in a named initialized
section called passwords. It also creates a named initialized section called csm_rsvd that
contains all 0x0000 values and is of proper length to fit in the aforementioned 118 word address
ranges. See reference [9] for more information on the assembly language directives used.

* File: passwords.asm

* Dummy passwords of 0xFFFF are shown. The user can change these to
* desired values.
*
* CAUTION: Do not use 0x0000 for all 8 passwords or the CSM module will
* be permanently locked. See References [6-8] for more information.

 .sect "passwords"
 .int 0xFFFF ;PWL0 (LSW of 128-bit password)
 .int 0xFFFF ;PWL1
 .int 0xFFFF ;PWL2
 .int 0xFFFF ;PWL3
 .int 0xFFFF ;PWL4
 .int 0xFFFF ;PWL5
 .int 0xFFFF ;PWL6
 .int 0xFFFF ;PWL7 (MSW of 128-bit password)
;--
 .sect "csm_rsvd"
 .loop (3F7FF5h - 3F7F80h + 1)
 .int 0x0000
 .endloop
;--

 .end ;end of file passwords.asm

Note that this example is showing dummy password values of 0xFFFF. Replace these values
with your desired passwords.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 21

CAUTION:

Do not use 0x0000 for all 8 passwords. Doing so will permanently lock the CSM
module! See references [6-8] for more information.

The passwords and csm_rsvd sections should be placed in memory with the user linker
command file.

For non-DSP/BIOS projects, the user should define memories named (for example)
PASSWORDS and CSM_RSVD on PAGE 0 in the MEMORY portion of the user linker command
file. The sections passwords and csm_rsvd can then be linked to these memories. The
following example applies to current F28xxx devices (for other devices, consult the device
datasheet to confirm the addresses of the password and CSM reserved locations).

/**
* User's user linker command file (non-DSP/BIOS Projects)
**/

MEMORY
{
PAGE 0: /* Program Memory */
 CSM_RSVD : origin = 0x3F7F80, length = 0x000076
 PASSWORDS : origin = 0x3F7FF8, length = 0x000008
PAGE 1: /* Data Memory */
}

SECTIONS
{
/*** Code Security Password Locations ***/
passwords: > PASSWORDS, PAGE = 0
csm_rsvd: > CSM_RSVD, PAGE = 0
}

For DSP/BIOS projects, the user should define the memories named (for example)
PASSWORDS and CSM_RSVD using the memory section manager of the DSP/BIOS
configuration tool. The two figures that follow show the DSP/BIOS memory section manager
properties for these memories on current F28xxx devices. For other devices, consult the device
datasheet to confirm the correct addresses and lengths.

SPRA958H

22 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

Figure 3. DSP/BIOS MEM Properties for CSM Password Locations

Figure 4. DSP/BIOS MEM Properties for CSM Reserved Locations

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 23

The sections passwords and csm_rsvd can then be linked to these memories in the user linker
command file. For DSP/BIOS projects, the user linker command file would appear as:

/**
* User's linker command file (DSP/BIOS Projects)
**/

SECTIONS
{
/*** Code Security Password Locations ***/
passwords: > PASSWORDS, PAGE = 0
csm_rsvd: > CSM_RSVD, PAGE = 0
}

6 Executing Your Code from Flash after a DSP Reset
(DSP/BIOS and non-DSP/BIOS projects)

F28xxx devices contain a ROM bootloader that can transfer code execution to the flash after a
device reset. The ROM bootloader is detailed in references [10-12]. When the boot mode
selection pins are configured for "Jump to Flash" mode, the ROM bootloader will branch to the
instruction located at address 0x3F7FF6 in the flash (this is for F280x and F281x devices - see
device datasheet for your specific device). The user should place an instruction that branches to
the beginning of their code at this address. Recall that the CSM passwords begin at address
0x3F7FF8 (again, for F280x and F281x), so that exactly 2 words are available to hold the branch
instruction. Not coincidentally, a long branch (LB in assembly code) occupies 2 words.

In general, the branch instruction will branch to the start of the C-environment initialization
routine located in the C-compiler runtime support library. The entry symbol for this routine is
_c_int00. No C code can be executed until this setup routine is run. Alternately, there is
sometimes a need to execute a small amount of assembly code prior to starting your C
application (for example, to disable the watchdog timer peripheral). In this case, the branch
instruction should branch to the start of your assembly code. Regardless, there is a need to
properly locate this branch instruction in the flash. The easiest way to do this is with assembly
code. The following example creates a named initialized section called codestart that contains a
long branch to the C-environment setup routine. The codestart section should be placed in
memory with the user linker command file.

* CodeStartBranch.asm

 .ref _c_int00

 .sect "codestart"
 LB _c_int00 ;branch to start of code

 .end ;end of file CodeStartBranch.asm

SPRA958H

24 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

For non-DSP/BIOS projects, the user should define a memory named (for example)
BEGIN_FLASH on PAGE 0 in the MEMORY portion of the user linker command file. The
section codestart can then be linked to this memory. The following example applies to F281x,
F280x, and F280xx devices. For other F28xxx devices, consult the device datasheet to confirm
the boot to flash target address.

/**
* User's linker command file (non-DSP/BIOS Projects)
**/

MEMORY
{
PAGE 0: /* Program Memory */
 BEGIN_FLASH : origin = 0x3F7FF6, length = 0x000002
PAGE 1: /* Data Memory */
}

SECTIONS
{
/*** Jump to Flash boot mode entry point ***/
codestart: > BEGIN_FLASH, PAGE = 0
}

For DSP/BIOS projects, the user should define the memory named (for example)
BEGIN_FLASH using the memory section manager of the DSP/BIOS configuration tool. Figure
5 shows the memory section manager properties for this memory on F281x, F280x, and F280xx
devices. For other devices, consult the datasheet to confirm the boot to flash target address.

Figure 5. DSP/BIOS MEM Properties for Jump to Flash Entry Point

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 25

The section codestart can then be linked to this memory in the user linker command file. For
DSP/BIOS projects, the linker command file would appear as:

/**
* User's linker command file (DSP/BIOS projects)
**/

SECTIONS
{
/*** Jump to Flash boot mode entry point ***/
codestart: > BEGIN_FLASH, PAGE = 0
}

7 Disabling the Watchdog Timer During C-Environment Boot
(DSP/BIOS and non-DSP/BIOS projects)

The C-environment initialization function in the C compiler runtime support library, _c_int00,
performs the initialization of global and static variables. This involves a data copy from the .cinit
section (located in on-chip flash memory) to the .ebss section (located in RAM) for each
initialized global variable. For example, when a global variable is declared in source code as:

 int x=5;

the "5" is placed into the initialized section .cinit, whereas space is reserved in the .ebss section
for the symbol "x." The _c_int00 routine then copies the "5" to location "x" at runtime. When a
large number of initialized global and static variables are present in the software, the watchdog
timer can timeout before the C-environment boot routine can finish and call main() (where the
watchdog can be either configured and serviced, or disabled). This problem may not manifest
itself during code development in RAM since the data copy from a .cinit section linked to RAM
will occur at a fast pace. However, when the .cinit section is linked to internal flash, copying
each data word will take multiple cycles since the internal flash memory defaults to the maximum
number of wait-states (wait-states are not configured until the user code reaches main()). In
addition, the code performing the data copying is executing from flash, which further increases
the time needed to complete the data copy (the code fetches and data reads must share access
to the flash). Combined with the fact that the watchdog timeout period defaults to its minimum
possible value, a watchdog timeout becomes a real possibility.

There is an easy method to detect this problem using CCS. To test for a watchdog timeout:

1. Load the symbols for the code you have programmed into the flash
(click File → Load_Symbols → Load_Symbols_Only).

2. Reset the DSP (click Debug → Reset_CPU).

3. Restart the DSP (click Debug → Restart) (this step is not necessary if the bootloader is
configured for "Jump to Flash" mode).

4. Run to main() (click Debug → Go_Main). If you do not get to main(), it is pretty likely that
the watchdog is expiring before the C-environment boot routine is able to complete.

SPRA958H

26 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

The easiest method for correcting the watchdog timeout problem is to disable the watchdog
before starting the C-environment boot routine. The watchdog can later be re-enabled after
reaching main() and starting your normal code execution flow. The watchdog is disabled by
setting the WDDIS bit to a 1 in the WDCR register. To disable the watchdog before the boot
routine, assembly code must be used (since the C environment is not yet setup). In Section 6,
the codestart assembly code section implemented a branch instruction that jumped to the
C-environment initialization routine, _c_int00. To disable the watchdog, this branch should
instead jump to watchdog disabling code, which can then branch to the _c_int00 routine. The
following code example performs these tasks:

* File: CodeStartBranch.asm
* Devices: TMS320F28xxx
* Author: David M. Alter, Texas Instruments Inc.
* History: 02/11/05 - original (D. Alter)

WD_DISABLE .set 1 ;set to 1 to disable WD, else set to 0

 .ref _c_int00

* Function: codestart section
* Description: Branch to code starting point

 .sect "codestart"
 .if WD_DISABLE == 1
 LB wd_disable ;Branch to watchdog disable code
 .else
 LB _c_int00 ;Branch to start of boot.asm in RTS library
 .endif
;end codestart section

* Function: wd_disable
* Description: Disables the watchdog timer

 .if WD_DISABLE == 1

 .text
wd_disable:
 EALLOW ;Enable EALLOW protected register access
 MOVZ DP, #7029h>>6 ;Set data page for WDCR register
 MOV @7029h, #0068h ;Set WDDIS bit in WDCR to disable WD
 EDIS ;Disable EALLOW protected register access
 LB _c_int00 ;Branch to start of boot.asm in RTS library

 .endif

;end wd_disable

 .end ; end of file CodeStartBranch.asm

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 27

8 C-Code Examples

8.1 General Overview

A code download containing four code projects for each of F281x, F280x, and F2833x devices
accompanies this application report (a total of twelve code projects, four for each device type):

• F28xxx_example_nonBIOS_ram.pjt - non-DSP/BIOS project that runs from on-chip RAM

• F28xxx_example_nonBIOS_flash.pjt - non-DSP/BIOS project that runs from on-chip Flash

• F28xxx_example_BIOS_ram.pjt - DSP/BIOS project that runs from on-chip RAM

• F28xxx_example_BIOS_flash.pjt - DSP/BIOS project that runs from on-chip Flash

These are just examples, and have only been tested briefly. No guarantee is made about their
suitability for application usage. These examples were built and tested using C2000 Code
Composer Studio version v3.3.81.5, C-compiler v5.1.0, and DSP/BIOS v5.33. Although the
focus of this report is running code from flash, the RAM examples are provided for
completeness.

The projects were developed on the eZdspF2812, eZdspF2808, and eZdspF28335 development
boards. However, they will also run on other F28xxx board as follows:

F281x examples: These will run on any F281x board as they run entirely from internal
memory and use only the flash memory common to all three devices. If running on a different
board, be aware that the code configures the GPIOA0/PWM1 and GPIOF14/XF_XPLLDIS*
pins as outputs. Also note that the code does configure the external memory interface on the
F2812 as part of the DSP initialization process. Since most of the external memory interface
does not exist on F2810 and F2811 devices (exception is the XCLKOUT pin), this initialization
is not needed on these two devices (although it is harmless).

F280x examples: These will run on any F2808 board. They can also be adapted to run on
other F280x and F280xx boards by adjusting the memory definitions (RAM and Flash) in the
.cmd file for non-DSP/BIOS projects, or the .tcf file for DSP/BIOS projects. The PLL setting
may also need to be adjusted depending on the crystal or oscillator used on the board. If
running on a different board, the user should be aware that the code configures the
GPIO0/ePWM1A and GPIOF34 pins as outputs.

F2833x examples: These will run on any F28335 board. They can also be adapted to run on
other F2833x or F2823x board by adjusting the memory definitions (RAM and Flash) in the
.cmd file for non-DSP/BIOS projects, or the .tcf file for DSP/BIOS projects. The PLL setting
may also need to be adjusted depending on the crystal or oscillator used on the board. Also,
for F2823x devices, you should change the project build options in CCS to disable floating
point support (go to Project→Build_Options, Advanced tab, change Floating Point Support
from ‘FPU32’ to ‘None’). If running on a different board, the user should be aware that the
code configures the GPIO0/ePWM1A and GPIOF32 pins as outputs.

SPRA958H

28 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

The source code uses either the DSP281x Header File structures v1.11, the DSP280x Header
File structures v1.60, or the DSP2833x Header File structures v1.20 for accessing peripheral
registers on the F28xxx. All needed files from the header file packages are included here.
However, the user is encouraged to download the complete header files packages for additional
information. These are available on the TI website, http://www.ti.com (see references [15-18]).

Each of the code projects perform the same functions:

• Illustrates F28xxx DSP initialization. The PLL is configured for net multiply by 5 operation.

• Enables the real-time emulation mode of Code Composer Studio.

• Toggles the GPIOF14 pin on the eZdspF2812 board, the GPIOF34 pin on eZdspF2808, and
the GPIO32 pin on the eZdspF28335 to blink the LED on the board. In non-DSP/BIOS
projects, this is done in the ADCINT ISR. In DSP/BIOS projects, a periodic function is used.

• Configures the ADC to sample on ADCINA0 channel at a 50 kHz rate.

• Services the ADC interrupt. The ADC result is placed in a circular buffer of length 50 words.

• Sends out 2 kHz symmetric PWM on either the PWM1 pin (for F281x), or the ePWM1A
signal mapped to the GPIO0 pin (for F2808, F28335).

• Configures the capture unit #1. On F2808 and F28335 devices, the eCAP1 signal is
mapped to the GPIO5 pin.

• Services the capture #1 interrupt. Reads the capture result and computes the pulse width.

8.2 Directory Structure and File Utilizations

The four code projects for each device mostly share the same source code files. This illustrates
how the same source code can be used in RAM and flash applications, and DSP/BIOS and non-
DSP/BIOS applications. Table 3 shows the directory structure of the example code, while
Tables Table 4-Table 6 provide a complete inventory of all files and their utilization by each
project.

Table 3. Example Code File Directories

File Directory Contents
\cmd Contains linker command files (.cmd files)
\DSP281x_headers\cmd,
\DSP280x_headers\cmd,
\DSP2833x_headers\cmd

Contains the needed linker command files from the DSP281x Header
File structures v1.11, the DSP280x Header File structures v1.60, and
the DSP2833x Header File structures v1.20.

\DSP281x_headers\include,
\DSP280x_headers\include,
\DSP2833x_headers\include

Contains the needed include files from the DSP281x Header File
structures v1.11, or the DSP280x Header File structures v1.60, and the
DSP2833x Header File structures v1.20.

\include Contains include files (.h files)
\projects Contains the example projects (.cmd, .h, .pjt, and .tcf files)
\src Contains common and non-common source code files (.c and .asm

files)

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 29

Table 4. F2812 Example Code File Inventory and Utilization

Filename

F2812_exam
ple_nonB

IO
S_ram

F2812_exam
ple_nonB

IO
S_flash

F2812_exam
ple_B

IO
S_ram

F2812_exam
ple_B

IO
S_flash

eZdspF2812\cmd\F2812_BIOS_flash.cmd 9
eZdspF2812\cmd\F2812_BIOS_ram.cmd 9
eZdspF2812\cmd\F2812_nonBIOS_flash.cmd 9
eZdspF2812\cmd\F2812_nonBIOS_ram.cmd 9
eZdspF2812\DSP281x_headers\cmd\DSP281x_Headers_BIOS.cmd1 9 9
eZdspF2812\DSP281x_headers\cmd\DSP281x_Headers_nonBIOS.cmd1 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Adc.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_CpuTimers.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_DevEmu.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Device.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_ECan.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Ev.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Gpio.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Mcbsp.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_PieCtrl.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_PieVect.h1 9 9 92 92
eZdspF2812\DSP281x_headers\include\DSP281x_Sci.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Spi.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_SysCtrl.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_Xintf.h1 9 9 9 9
eZdspF2812\DSP281x_headers\include\DSP281x_XIntrupt.h1 9 9 9 9
eZdspF2812\include\DSP281x_DefaultIsr.h1 9 9
eZdspF2812\include\F2812_example.h 9 9 9 9
eZdspF2812\projects\F2812_example_BIOS_flash.pjt 9
eZdspF2812\projects\F2812_example_BIOS_flash.tcf 9
eZdspF2812\projects\F2812_example_BIOS_flashcfg.cmd3 9

SPRA958H

30 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

eZdspF2812\projects\F2812_example_BIOS_ram.pjt 9
eZdspF2812\projects\F2812_example_BIOS_ram.tcf 9
eZdspF2812\projects\F2812_example_BIOS_ramcfg.cmd3 9
eZdspF2812\projects\F2812_example_nonBIOS_flash.pjt 9
eZdspF2812\projects\F2812_example_nonBIOS_ram.pjt 9
eZdspF2812\src\Adc.c 9 9 9 9
eZdspF2812\src\CodeStartBranch.asm 9 9
eZdspF2812\src\DefaultIsr_BIOS.c 9 9
eZdspF2812\src\DefaultIsr_nonBIOS.c 9 9
eZdspF2812\src\DelayUs.asm 9 9 9 9
eZdspF2812\src\DSP281x_GlobalVariableDefs.c1 9 9 9 9
eZdspF2812\src\Ev.c 9 9 9 9
eZdspF2812\src\Flash.c 9 9

eZdspF2812\src\Gpio.c 9 9 9 9
eZdspF2812\src\Main_BIOS.c 9 9
eZdspF2812\src\Main_nonBIOS.c 9 9
eZdspF2812\src\Passwords.asm 9 9
eZdspF2812\src\PieCtrl_BIOS.c 9 9
eZdspF2812\src\PieCtrl_nonBIOS.c 9 9
eZdspF2812\src\PieVect_nonBIOS.c 9 9
eZdspF2812\src\SetDBGIER.asm 9 9 9 9
eZdspF2812\src\SysCtrl.c 9 9 9 9
eZdspF2812\src\Watchdog.c 9 9 9 9

eZdspF2812\src\Xintf.c 9 9 9 9
eZdspF2812\disclaimer.txt Documentation file
eZdspF2812\readme.txt Documentation file

Table 4 Notes:
1 This file is identical to the file of the same name found in the \v111\DSP281x_Headers
subdirectory of the DSP281x Header File structures, v1.11 (see reference [15]).
2 Although DSP281x_PieVect.h is included into the flash projects, the structure PieVectTable
that it defines (and which is linked over the PIEVECT RAM) is not actually used by the code in
DSP/BIOS projects. It is included more for completeness, and to assist with debug (e.g., for
viewing the PIE vectors in a watch window).
3 The files F2812_example_BIOS_flashcfg.cmd and F2812_example_BIOS_ramcfg.cmd are
created by the DSP/BIOS configuration tool and should not be modified directly. They are
provided here only to avoid a CCS project open error.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 31

Table 5. F2808 Example Code File Inventory and Utilization

Filename

F2808_exam
ple_nonB

IO
S_ram

F2808_exam
ple_nonB

IO
S_flash

F2808_exam
ple_B

IO
S_ram

F2808_exam
ple_B

IO
S_flash

eZdspF2808\cmd\F2808_BIOS_flash.cmd 9
eZdspF2808\cmd\F2808_BIOS_ram.cmd 9
eZdspF2808\cmd\F2808_nonBIOS_flash.cmd 9
eZdspF2808\cmd\F2808_nonBIOS_ram.cmd 9
eZdspF2808\DSP280x_headers\cmd\DSP280x_Headers_BIOS.cmd1 9 9
eZdspF2808\DSP280x_headers\cmd\DSP280x_Headers_nonBIOS.cmd1 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_Adc.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_CpuTimers.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_DevEmu.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_Device.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_ECan.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_ECap.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_EPwm.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_EQep.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_Gpio.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_I2c.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_PieCtrl.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_PieVect.h1 9 9 92 92
eZdspF2808\DSP280x_headers\include\DSP280x_Sci.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_Spi.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_SysCtrl.h1 9 9 9 9
eZdspF2808\DSP280x_headers\include\DSP280x_XIntrupt.h1 9 9 9 9
eZdspF2808\include\DSP280x_DefaultIsr.h1 9 9
eZdspF2808\include\F2808_example.h 9 9 9 9
eZdspF2808\projects\F2808_example_BIOS_flash.pjt 9
eZdspF2808\projects\F2808_example_BIOS_flash.tcf 9
eZdspF2808\projects\F2808_example_BIOS_flashcfg.cmd3 9

SPRA958H

32 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

eZdspF2808\projects\F2808_example_BIOS_ram.pjt 9
eZdspF2808\projects\F2808_example_BIOS_ram.tcf 9
eZdspF2808\projects\F2808_example_BIOS_ramcfg.cmd3 9
eZdspF2808\projects\F2808_example_nonBIOS_flash.pjt 9
eZdspF2808\projects\F2808_example_nonBIOS_ram.pjt 9
eZdspF2808\src\Adc.c 9 9 9 9
eZdspF2808\src\CodeStartBranch.asm 9 9
eZdspF2808\src\DefaultIsr_BIOS.c 9 9
eZdspF2808\src\DefaultIsr_nonBIOS.c 9 9
eZdspF2808\src\DelayUs.asm 9 9 9 9
eZdspF2808\src\DSP280x_GlobalVariableDefs.c1 9 9 9 9
eZdspF2808\src\ECap.c 9 9 9 9
eZdspF2808\src\EPwm.c 9 9 9 9
eZdspF2808\src\Flash.c 9 9

eZdspF2808\src\Gpio.c 9 9 9 9
eZdspF2808\src\Main_BIOS.c 9 9
eZdspF2808\src\Main_nonBIOS.c 9 9
eZdspF2808\src\Passwords.asm 9 9
eZdspF2808\src\PieCtrl_BIOS.c 9 9
eZdspF2808\src\PieCtrl_nonBIOS.c 9 9
eZdspF2808\src\PieVect_nonBIOS.c 9 9
eZdspF2808\src\SetDBGIER.asm 9 9 9 9
eZdspF2808\src\SysCtrl.c 9 9 9 9
eZdspF2808\src\Watchdog.c 9 9 9 9

eZdspF2808\disclaimer.txt Documentation file
eZdspF2808\readme.txt Documentation file

Table 5 Notes:
1 This file is identical to the file of the same name found in the \v160\DSP280x_Headers
subdirectory of the DSP280x Header File structures, v1.60 (see reference [16]).
2 Although DSP280x_PieVect.h is included into the flash projects, the structure PieVectTable
that it defines (and which is linked over the PIEVECT RAM) is not actually used by the code in
DSP/BIOS projects. It is included more for completeness, and to assist with debug (e.g., for
viewing the PIE vectors in a watch window).
3 The files F2808_example_BIOS_flashcfg.cmd and F2808_example_BIOS_ramcfg.cmd are
created by the DSP/BIOS configuration tool and should not be modified directly. They are
provided here only to avoid a CCS project open error.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 33

Table 6. F28335 Example Code File Inventory and Utilization

Filename

F28335_exam
ple_nonB

IO
S_ram

F28335_exam
ple_nonB

IO
S_flash

F28335_exam
ple_B

IO
S_ram

F28335_exam
ple_B

IO
S_flash

eZdspF28335\cmd\F28335_BIOS_flash.cmd 9
eZdspF28335\cmd\F28335_BIOS_ram.cmd 9
eZdspF28335\cmd\F28335_nonBIOS_flash.cmd 9
eZdspF28335\cmd\F28335_nonBIOS_ram.cmd 9
eZdspF28335\DSP2833x_headers\cmd\DSP2833x_Headers_BIOS.cmd1 9 9
eZdspF28335\DSP2833x_headers\cmd\DSP2833x_Headers_nonBIOS.cmd1 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_Adc.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_CpuTimers.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_DevEmu.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_Device.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_ECan.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_ECap.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_EPwm.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_EQep.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_Gpio.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_I2c.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_PieCtrl.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_PieVect.h1 9 9 92 92
eZdspF28335\DSP2833x_headers\include\DSP2833x_Sci.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_Spi.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_SysCtrl.h1 9 9 9 9
eZdspF28335\DSP2833x_headers\include\DSP2833x_XIntrupt.h1 9 9 9 9
eZdspF28335\include\DSP2833x_DefaultIsr.h1 9 9
eZdspF28335\include\F28335_example.h 9 9 9 9
eZdspF28335\projects\F28335_example_BIOS_flash.pjt 9
eZdspF28335\projects\F28335_example_BIOS_flash.tcf 9

SPRA958H

34 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

eZdspF28335\projects\F28335_example_BIOS_flashcfg.cmd3 9

eZdspF28335\projects\F28335_example_BIOS_ram.pjt 9
eZdspF28335\projects\F28335_example_BIOS_ram.tcf 9
eZdspF28335\projects\F28335_example_BIOS_ramcfg.cmd3 9
eZdspF28335\projects\F28335_example_nonBIOS_flash.pjt 9
eZdspF28335\projects\F28335_example_nonBIOS_ram.pjt 9
eZdspF28335\src\Adc.c 9 9 9 9
eZdspF28335\src\CodeStartBranch.asm 9 9
eZdspF28335\src\DefaultIsr_BIOS.c 9 9
eZdspF28335\src\DefaultIsr_nonBIOS.c 9 9
eZdspF28335\src\DelayUs.asm 9 9 9 9
eZdspF28335\src\DSP2833x_GlobalVariableDefs.c1 9 9 9 9
eZdspF28335\src\ECap.c 9 9 9 9
eZdspF28335\src\EPwm.c 9 9 9 9
eZdspF28335\src\Flash.c 9 9

eZdspF28335\src\Gpio.c 9 9 9 9
eZdspF28335\src\Main_BIOS.c 9 9
eZdspF28335\src\Main_nonBIOS.c 9 9
eZdspF28335\src\Passwords.asm 9 9
eZdspF28335\src\PieCtrl_BIOS.c 9 9
eZdspF28335\src\PieCtrl_nonBIOS.c 9 9
eZdspF28335\src\PieVect_nonBIOS.c 9 9
eZdspF28335\src\SetDBGIER.asm 9 9 9 9
eZdspF28335\src\SysCtrl.c 9 9 9 9
eZdspF28335\src\Watchdog.c 9 9 9 9

eZdspF28335\disclaimer.txt Documentation file
eZdspF28335\readme.txt Documentation file

Table 6 Notes:
1 This file is identical to the file of the same name found in the \v120\DSP2833x_Headers
subdirectory of the DSP2833x Header File structures, v1.20 (see reference [18]).
2 Although DSP2833x_PieVect.h is included into the flash projects, the structure PieVectTable
that it defines (and which is linked over the PIEVECT RAM) is not actually used by the code in
DSP/BIOS projects. It is included for completeness, and to assist with debug (e.g., for viewing
the PIE vectors in a watch window).
3 The files F28335_example_BIOS_flashcfg.cmd and F28335_example_BIOS_ramcfg.cmd are
created by the DSP/BIOS configuration tool and should not be modified directly. They are
provided here only to avoid a CCS project open error.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 35

8.3 Additional Information

1) The .pjt project files can be found in the \projects directory. After compiling a project, the .out
file will be located in the \projects\Debug directory.

IMPORTANT:
For the flash projects, the .out file CANNOT simply be loaded in the DSP using
File->Load_Project in CCS. The flash memory must be PROGRAMMED using a flash
programming utility. One such utility is the C2000 Flash Programming Plugin tool for
Code Composer Studio, which comes installed with CCS v3.3 (see the ‘Tools’ menu
inside CCS).

2a) If using the RAM examples, the eZdsp board should be configured for "Jump to H0 SARAM"
(F2812) or “Jump to M0 SARAM” (F2808, F28335) boot mode. Check the board jumpers/dip-
switch to be:

eZdspF2812: JP1 2-3 (MP/MC*)

 JP9 1-2 (PLL)

 JP7 2-3 (boot mode selection)

 JP8 2-3 (boot mode selection)

 JP11 1-2 (boot mode selection)

 JP12 2-3 (boot mode selection)

eZdspF2808: DIP SW1: 1 = ON

 2 = OFF

 3 = ON

eZdspF28335: DIP SW1: 1 = ON

 2 = ON

 3 = OFF

 4 = ON

If this does not seem to be working, check the reference manual for your eZdsp board to confirm
the settings. Jumper/dip-switch settings may have changed if the eZdsp board was revised.

SPRA958H

36 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

2b) If using the FLASH examples, the eZdsp board should be configured for "Jump to Flash"
boot mode. Check the board jumpers/dip-switches to be:

eZdspF2812: JP1 2-3 (MP/MC*)

 JP9 1-2 (PLL)

 JP7 1-2 (boot mode selection)

 JP8 don’t care (boot mode selection)

 JP11 don’t care (boot mode selection)

 JP12 don’t care (boot mode selection)

eZdspF2808: DIP SW1: 1 = OFF

 2 = OFF

 3 = OFF

eZdspF28335: DIP SW1: 1 = OFF

 2 = OFF

 3 = OFF

 4 = OFF

If this does not seem to be working, check the reference manual for your eZdsp board to confirm
the jumper settings. Jumper settings may have changed if the eZdsp board was revised.

3) The ram examples are linking sections in various places that may look unnecessary (e.g., the
section ramfuncs is loaded to one ram area, and copied to and run from another ram area. On
the surface, this look rather pointless. These things were done in preparation to build the flash
project. In reality, a real embedded system cannot run on ram alone. It must have non-volatile
memory someplace. Hence, in the flash system, you will see the same sections being loaded to
flash, but copied to and run from ram.

4) There has not been too much attention given to where everything is linked. The goal in
writing these example projects was to simply get them working. If these projects are used as a
starting point for code development, the linking may need to be tuned to get better performance
(e.g., to avoid memory block access contention, or to better manage memory block utilization).

5) For non-DSP/BIOS projects, a complete set of interrupt service routines are defined in the file
DefaultIsr_nonBIOS.c. Each interrupt is executed directly in its hardware ISR. However, with
the exception of the ADCINT and ECAP1INT (or CAPINT1 on F2812), each ISR actually
executes an ESTOP0 instruction (emulation stop) to trap spurious interrupts during debug. Note
that each ISR is using the "interrupt" keyword which tells the compiler to perform a context
save/restore upon function entry/exit.

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 37

6) For DSP/BIOS projects, a complete set of (hardware) interrupt service routines are defined in
the file DefaultIsr_BIOS.c. Each ISR is hooked to the desired interrupt using the HWI manager
in the DSP/BIOS configuration tool. Also, the DSP/BIOS Interrupt Dispatcher is being used to
handle the context save/restore, which is why the ISRs are not using the "interrupt" keyword (as
in the non-DSP/BIOS case). In these examples, the ECAP1INT ISR (or CAPINT1 ISR for
F2812) is performed directly in the DefaultIsr_BIOS.c file (as an example of reducing latency),
whereas the ADC interrupt function in DefaultIsr_BIOS.c posts a SWI to perform the ADC
routine. These are just examples. Note that the ECAP1INT (and CAPINT1) ISRs are using the
DSP/BIOS dispatcher to perform context save/restore (as selected in the HWI manager of the
configuration tool). If absolute minimum latency is required (for some time critical ISR), one
could disable the interrupt dispatcher for that interrupt, and add the "interrupt" keyword to the
ISR function declaration. Note that doing so will preclude the user for utilizing any DSP/BIOS
functionality in that ISR.

SPRA958H

38 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

References

1. TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811,
TMS320C2812 Digital Signal Processors Data Manual (SPRS174)

2. TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801,
TMS320C2802, TMS320C2801, TMS320F2801x DSPs Data Manual (SPRS230)

3. TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234,
TMS320F28232 Digital Signal Controllers Data Manual (SPRS439)

4. TMS320F28044 Digital Signal Processor Data Manual (SPRS357)
5. TMS320C28x Optimizing C/C++ Compiler User’s Guide (SPRU514)
6. TMS320x281x DSP System Control and Interrupts Reference Guide (SPRU078)
7. TMS320x280x, 2801x, 2804x DSP System Control and Interrupts Reference Guide

(SPRU712)
8. TMS320x2833x System Control and Interrupts Reference Guide (SPRUFB0)
9. TMS320C28x Assembly Language Tools User’s Guide (SPRU513)
10. TMS320x281x DSP Boot ROM Reference Guide (SPRU095)
11. TMS320x280x, 2801x, 2804x Boot ROM Reference Guide (SPRU722)
12. TMS320x2833x Boot ROM Reference Guide (SPRU963)
13. TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430)
14. TMS320C28x Floating Point Unit and Instruction Set Reference Guide (SPRUE02)
15. C281x C/C++ Header Files and Peripheral Examples (SPRC097)
16. C280x C/C++ Header Files and Peripheral Examples (SPRC191)
17. C2804x C/C++ Header Files and Peripheral Examples (SPRC324)
18. C2833x/C2823x C/C++ Header Files and Peripheral Examples (SPRC530)

SPRA958H

 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 39

Revision History

Revision Date Who Description of Major Changes from Previous Version
SPRA958H Sep. 29

2008
D. Alter - Changed the following in the code examples:

 * F2812: updated to DSP281x header files v1.11 (from v1.10).
 * F28335: added missing prototype for InitDma() in F28335_example.h.
 * F28335: F2833x_example_BIOS_ram.tcf and F2833x_example_BIOS_flash.tcf, fixed

L6SARAM and M0SARAM base addresses, deleted unused heap in L5SARAM.
 * F28335: changed InitSysctrl() so that PLL uses x10/4 to x10/2. /1 mode is no longer

used, per production datasheet.
 * F28335: updated to DSP2833x header files v1.20 (from v1.10).
 * F28335: fixed incorrect linkage of InternalMemFuncs section from ram to flash in

F28335_example_BIOS_flash.pjt
 * All: tested code with CCS v3.3.81.5, DSP/BIOS v5.33, and C compiler v5.1.0.

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

