C28x Floating Point Unit Library

Module User’s Guide

C28x Foundation Software

V1.00 Beta 1

January 7, 2008

Q‘ TEXAS
INSTRUMENTS

©Texas Instruments Inc., 2007-2008 Beta 1

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgement, including those pertaining to warranty, patent infringement,
and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such products or services might be or are used. Tl's
publication of information regarding any third party’s products or services does not constitute TI's
approval, license, warranty or endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated Tl product or service, is an unfair and deceptive business practice,
and Tl is not responsible or liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters
stated by TI for that products or service voids all express and any implied warranties for the
associated Tl product or service, is an unfair and deceptive business practice, and Tl is not
responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright ©2002, Texas Instruments Incorporated

©Texas Instruments Inc., 2007-2008 Beta 1 2

Contents

1. Introduction 4

2. Installing the Library 4
2.1. Where the Files are Located (Directory Structure) 4
2.2. Build options used to build the library 4
2.3. Header Files 5
2.4. A note about C functions and IQMath 5

3. Function Summary 6
3.1. FPU Function Summary 6

4. Function Descriptions 7
RFFT_f32 8
RFFT_f32u 11
RFFT_f32_mag 13
RFFT_f32s_mag 15
RFFT_f32_phase 17
RFFT_f32_sincostable 19

5. Revision History 21
Beta 1 — January 7, 2008 21

Trademarks

TMS320 is the trademark of Texas Instruments Incorporated.

Code Composer Studio is a trademark of Texas Instruments Incorporated.

All other trademark mentioned herein is property of their respective companies

©Texas Instruments Inc., 2007-2008 Beta 1 3

1.Introduction

The Texas Instruments TMS320C28x Floating Point Unit (FPU) Library is collection of highly
optimized application functions written for the C28x+FPU. These functions enable C/C++
programmers to take full advantage of the performance potential of the C28x+FPU. This
document provides a description of each function included within the library.

Note:

The first release of the library contains an optimized real FFT algorithm. Future releases
will include additional highly optimized algorithms.

2.Installing the Library

2.1. Where the Files are Located (Directory Structure)
As installed, the C28x FPU Library is partitioned into a well-defined directory structure. By

default, the library and source code is installed into the c:\tidcs\c28\C28x_FPU_Lib\<version>
directory. Table 1 describes the contents of the main directories used by library:

Table 1. C28x FPU Library Directory Structure

Directory Description

<base> Base install directory. By default this is
c:\tidcs\c28\C28x_FPU_Lib\betal For the rest of this document <base>
will be omitted from the directory names.

<base>\doc Documentation including the revision history from the previous release.

<basex\lib The built library.

<base>\include Include files for the library functions. These include function prototypes
and structure definitions.

<base>\source Source files for the library. This also includes a Code Composer Studio

project that can be used to re-build the library if required.

2.2. Build options used to build the library
The betal library is built with C28x codegen tools V5.0 Beta3 with the following options:

-g -03 -d"_DEBUG" -d"LARGE_MODEL" -ml -v28 --float_support=fpu32

©Texas Instruments Inc., 2007-2008 Beta 1 4

2.3. Header Files

A library header file is supplied in the <base>/include folder. This file contains structure
definitions and function prototypes. The header file also includes the C28x data type
definitions shown below:

#ifndef DSP28_DATA_TYPES
#define DSP28_DATA_TYPES

typedef int intlé6;
typedef long int32;
typedef long long inté4;
typedef unsigned int Uintl6;
typedef unsigned long Uint32;
typedef unsigned long long Uint64;
typedef float float32;
typedef long double float64;
#endif

2.4. A note about C functions and IQMath

Most of the functions contained in the C28x FPU library are c-callable assembly. A few
functions may be written in C. These C functions are written using the IQMath pre-processor
notation. This allows these functions to be easily ported from fixed point to floating-point
math. The included IQMath header file, IQmathLib.h, controls whether the code is built for
fixed point or floating-point.

In this installation, the file IQmathLib.h file is configured to generate floating-point code. i.e.
the MATH_TYPE in the file is defined as FLOAT_MATH. For more information on the
IQMath notation, please refer to C28x™ IQMath Library - A Virtual Floating Point Engine
(SPRC087) which can be downloaded from TI's website.

©Texas Instruments Inc., 2007-2008 Beta 1 5

3.Function Summary

3.1. FPU Function Summary

This release is for the real FFT function. Other functions will be added in future releases.

Description

Prototype

Matrix and Vector Functions

Coming in a future release

DSP Functions

RFFT_f32

void RFFT_f32(RFFT_F32_STRUCT *);

RFFT_{32u

void RFFT_f32u(RFFT_F32_STRUCT *);

RFFT_f32_mag

void RFFT_f32_mag(RFFT_F32_STRUCT *);

RFFT_f32s_mag

void RFFT_f32s_mag(RFFT_F32_STRUCT *);

RFFT_{32_phase

void RFFT_f32_phase(RFFT_F32_STRUCT *);

RFFT {32 sincostable

void RFFT_f32_sincostable(RFFT_F32_STRUCT *);

Filter Functions

Coming in a future release

©Texas Instruments Inc., 2007-2008 Beta 1 6

4.Function Descriptions

©Texas Instruments Inc., 2007-2008 Beta 1 7

RFFT_f32

Single-Precision Real Fast Fourier Transform

Description This module computes a 32-bit floating-point real FFT including input bit
reversing. This version of the function requires input buffer memory alignment. If
you do not wish to align the input buffer, then use the RFFT_f32u function.

Header File FPU.h

Declaration VOID RFFT_f32 (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_{32 function:
typedef struct {

float32 *InBuf;

float32 *OutBuf;

float32 *CosSinBuf;
float32 *MagBuf;

float32 *PhaseBuf;
Uintlé6 FFTSize;

Uintlé6 FFTStages;

} RFFT_F32_STRUCT;
ltem Description Format Comment

InBuf Input data Pointer to 32- Input buffer alignment is required. Refer to

bit float array the alignment section.

OutBuf Output buffer Pointer to 32- Result of RFFT_f32. This buffer is used as

bit float array

the input to the magnitude and phase
calculations. The output order for FFTSize
=N is:

bit float array

OutBuf[0] = reall[0]
OutBuf[1l] = real[l]
OQutBuf [2] = real[2]
gagBuf[N/Z] = real [N/2]
OutBuf [N/2+1] = imag[N/2-1]
BSEBuf[N73J = imag[3]
OutBuf [N-2] = imag[2]
OutBuf [N-1] = imag[1l]
CosSinBuf | Twiddle factors Pointer to 32- Calculate using RFFT_f32_sincostable().
bit float array
FFTSize FFT size Uint16 Must be a power of 2 greater than or equal
to 32.
FFTStages | Number of stages | Uint16 Stages = log2(FFTSize)
MagBuf Magnitude buffer | Pointer to 32- Not used.
bit float array
PhaseBuf Phase buffer Pointer to 32- Not used.

©Texas Instruments Inc., 2007-2008

Beta 1

Alighment Requirements:

Example:

The input buffer must be aligned to a multiple of the 2*FFTSize. For example, if the
FFTSize is 128 you must align the buffer corresponding to InBuf to 2*128 = 256. An
alignment to 64 will not work for a 128 FFT.

To align the input buffer, use the DATA_SECTION pragma to assign the buffer to a code
section and then align the buffer to the proper offset in the linker command file. In this
code example the buffer is assigned to the INBUF section.

#define FFT_SIZE 128

#pragma DATA_SECTION (Inbuffer, "INBUF");
float32 Inbuffer [N];

In the project’s linker command file, the INBUF section is then aligned to a multiple of the
FFTSize as shown below:

INBUF ALIGN(256) : { } > RAML6 PAGE 1

Note:

If the input buffer is not properly aligned, then the output will be unpredictable.

Note:

If you do not wish to align the input buffer, then you must use the RFFT_f32u
function. This version of the function does not have any input buffer alignment
requirements. Using RFFT_f32u will, however, result in a lower cycle performance.

The following sample code obtains the FFT of the real input.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */
#define FFT_STAGES 7 /* log2 (FFT_SIZE) */
/* Align the INBUF section to 2*FFT_SIZE in the linker file */
#pragma DATA_SECTION (Inbuf, "INBUF");

float32 InBuffer [FFT_SIZE];

float32 OutBuffer [FFT_SIZE];

float32 TwiddleBuffer [FFT_SIZE];

RFFT_F32_STRUCT fft;

main ()

{
fft.InBuf = InBuffer; /* Input data buffer */
fft.OutBuf = OutBuffer; /* FFT output buffer */
fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer */
fft.FFTSize = FFT_SIZE; /* FFT length */
fft.FFTStages = FFT_STAGES; /* FFT Stages */

RFFT_f32_sincostable(&fft) /* Initialize twiddle buffer */
RFFT_f32(&fft); /* Calculate output */

©Texas Instruments Inc., 2007-2008 Beta 1 9

Benchmark Information:

FFTSize C-Callable ASM
32 608 cycles
64 1278 cycles
128 2784 cycles
256 6170 cycles
512 13672 cycles

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

©Texas Instruments Inc., 2007-2008 Beta 1 10

RFFT_f32u

Single-Precision Real Fast Fourier Transform

Description This module computes a 32-bit floating-point real FFT including input bit
reversing. This version of the function does not have any buffer alignment
requirements. If you can align the input buffer, then use the RFFT_f32 function
for improved performance.

Header File FPU.h

Declaration VOID RFFT_f32u (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32 function:
typedef struct {

float32 *InBuf;
float32 *OutBuf;
float32 *CosSinBuf;
float32 *MagBuf;
float32 *PhaseBuf;
Uintlo6 FFTSize;
Uintlé6 FFTStages;
} REFT_F32_STRUCT;
Item Description Format Comment

InBuf Input data Pointer to 32- Input data. No alignment is required.

bit float array

OutBuf Output Pointer to 32- Result of RFFT_f32u. This buffer is used as the

buffer bit float array input to the magnitude and phase calculations.

The output order for FFTSize = N is:
OutBuf [0] = real[0]
OutBuf[l] = real[l]
OutBuf[2] = real[2]
5;£Buf[N/2] = real[N/2]
OutBuf [N/2-1] = imag[N/2]
BSEBuf[N73] = imag[3]
OutBuf [N-2] = imag[2]
OutBuf [N-1] = imag[1]

CosSinBuf | Twiddle Pointer to 32- Calculate using RFFT_f32_sincostable().

factors bit float array

FFTSize FFT Size Uint16 Must be a power of 2 greater than or equal to 32.

FFTStages | Number of Uint16 Stages = log2(FFTSize)

stages
MagBuf Magnitude Pointer to 32- Not used.
buffer bit float array
PhaseBuf | Phase Pointer to 32- Not used.
bit float array
©Texas Instruments Inc., 2007-2008 Beta 1 11

Note:

If you can align the input buffer to a 2*FFTSize, then consider using the RFFT_f32
function. This version of the function has input buffer alignment requirements, but
it is more cycle efficient

Example: The following sample code obtains the FFT of the real input.
#include FPU.h
#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */
#define FFT_STAGES 7 /* log2 (FFT_SIZE) */

float32 InBuffer [FFT_SIZE];
float32 OutBuffer [FFT_SIZE];
float32 TwiddleBuffer [FFT_SIZE];
RFFT_F32_STRUCT fft;

main ()

{
fft.InBuf = InBuffer; /* Input Buffer */
fft.OutBuf = OutBuffer; /* FFT Output Buffer */
fft.CosSinBuf = TwiddleBuffer;/* Twiddle Buffer */
fft.FFTSize = FFT_SIZE; /* FFT length */
fft.FFTStages = FFT_STAGES; /* FFT Stages */

RFFT_f32 sincostable(&fft) /* Initialize twiddle buffer */
RFFT_f32u(&fft); /* Calculate output */

}

Benchmark Information:

FFTSize C-Callable ASM
32 664 cycles
64 1390 cycles
128 3008 cycles
256 6618 cycles
512 14568 cycles

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

©Texas Instruments Inc., 2007-2008 Beta 1 12

RFFT_32_mag

Single-Precision Real Fast Fourier Transform Magnitude

Description This module computes the real FFT magnitude. The output from
RFFT_f32_mag matches the magnitude output from the FFT found in
common mathematics software and Code Composer Studio FFT graphs.
If instead a normalized magnitude like that performed by the fixed-point
TMS320C28x IQmath FFT library is required, then the RFFT_f32s_mag
function can be used. In fixed-point algorithms scaling is performed to
avoid overflowing data. Floating-point calculations do not need this
scaling to avoid overflow and therefore the RFFT_f32_mag function can
be used instead.

Header File FPU.h

Declaration VOID RFFT_f32_mag (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32_mag
function:
typedef struct {

float32 *InBuf;
float32 *QutBuf;
float32 *CosSinBuf;
float32 *MagBuf;
float32 *PhaseBuf;
Uintlo6 FFTSize;
Uintl6 FFTStages;
} REFT_F32_STRUCT;
Item Description Format Comment
InBuf Input data Pointer to 32-bit | Not used.
float array
OutBuf Output buffer Pointer to 32-bit | Result of RFFT_f32 or RFFT_f32u. Used as
float array the input to magnitude and phase.
CosSinBuf | Twiddle Pointer to 32-bit | Not used.
factors float array
FFTSize FFT size Uint16 Must be a power of 2 greater than or equal to
32.
FFTStages | Number of Uint16 Stages = log2(FFTSize)
stages
MagBuf Magnitude Pointer to 32-bit | Output from the magnitude calculation.
buffer float array FFTSize/2 in length.
PhaseBuf | Phase Pointer to 32-bit | Not used.
float array
©Texas Instruments Inc., 2007-2008 Beta 1 13

The following sample code obtains the FFT magnitude.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */
#define FFT_STAGES 7 /* log2 (FFT_SIZE) */
/* Align the INBUF section to 2*FFT_SIZE in the linker file */
#pragma DATA_SECTION (Inbuf, "INBUF");

float32 InBuffer [FFT_SIZE];

float32 OutBuffer [FFT_SIZE];

float32 TwiddleBuffer [FFT_SIZE];

float32 MagBuffer [FFT_SIZE/2];

RFFT_F32_STRUCT fft;

main ()

{
fft.InBuf = InBuffer; /* Input data buffer */
fft.OutBuf = OutBuffer; /* FFT output buffer */
fft.CosSinBuf = TwiddleBuffer; /* Twiddle factor buffer */
fft.FFTSize = FFT_SIZE; /* FFT length */
fft.FFTStages = FFT_STAGES; /* FFT Stages */
fft.MagBuf = MagBuffer; /* Magnitude buffer */

RFFT_f32 sincostable(&fft) /* Initialize Twiddle Buffer */
RFFT_f32(&fft); /* Calculate output */
RFFT_f32_mag(&fft) /* Calculate magnitude */

Benchmark Information:

FFTSize C-Callable ASM
32 1301 cycles
64 2645 cycles
128 5333 cycles
256 10709 cycles
512 21462 cycles

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

Note: The magnitude calculation calls the sqgrt function within the runtime-support library.
The magnitude function has not been optimized at this time.

©Texas Instruments Inc., 2007-2008 Beta 1 14

RFFT_f32s_mag

Single-Precision Real Fast Fourier Transform Magnitude

Description This module computes the scaled real FFT magnitude. The scaling is
1/[2N(FFT_STAGES-1)], and is done to match the normalization
performed by the fixed-point TMS320C28x IQmath FFT library for
overflow avoidance. Floating-point calculations do not need this scaling
to avoid overflow and therefore the RFFT_f32_mag function can be used
instead. The output from RFFT_f32_mag matches the magnitude output
from the FFT found in common mathematics software and Code
Composer Studio FFT graphs.

Header File FPU.h
Declaration VOID RFFT_f32s_mag (RFFT_F32_STRUCT *)
Usage A pointer to the following structure is passed to the RFFT_f32_mag
function:
typedef struct {
float32 *InBuf;
float32 *OutBuf;
float32 *CosSinBuf;
float32 *MagBuf;
float32 *PhaseBuf;
Uintlo6 FFTSize;
Uintlé6 FFTStages;
} REFT_F32_STRUCT;
ltem Description Format Comment
InBuf Input data Pointer to 32-bit float Not used.
array

OutBuf Output Pointer to 32-bit float Result of RFFT_f32 or RFFT_f32u. Used

buffer array as the input to magnitude and phase.

CosSinBuf | Twiddle Pointer to 32-bit float Not used.

factors array
FFTSize FFT size Uint16 Must be a power of 2 greater than or equal
to 32.
FFTStages | Number of Uint16 Stages = log2(FFTSize)
stages

MagBuf Magnitude Pointer to 32-bit float Output from the magnitude calculation.

buffer array FFTSize/2 in length.

PhaseBuf | Phase Pointer to 32-bit float Not used.

array

©Texas Instruments Inc., 2007-2008

Beta 1

15

The following sample code obtains the scaled FFT magnitude.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */
#define FFT_STAGES 7 /* log2 (FFT_SIZE) */
/* Align the INBUF section to 2*FFT_SIZE in the linker file */
#pragma DATA_SECTION (Inbuf, "INBUF");

float32 InBuffer [FFT_SIZE];

float32 OutBuffer [FFT_SIZE];

float32 TwiddleBuffer [FFT_SIZE];

float32 MagBuffer [FFT_SIZE/2];

RFFT_F32_STRUCT fft;

main ()

{
fft.InBuf = InBuffer; /* Input data buffer */
fft.OutBuf = OutBuffer; /* FFT output buffer */
fft.CosSinBuf = TwiddleBuffer; /* Twiddle factor buffer */
fft.FFTSize = FFT_SIZE; /* FFT length */
fft.FFTStages = FFT_STAGES; /* FFT Stages */
fft.MagBuf = MagBuffer; /* Magnitude buffer */
RFFT_f32 sincostable(&fft) /* Initialize twiddle buffer */
RFFT_f32(&fft); /* Calculate FFT output */
RFFT_f32s_mag (&fft) /* Calculate scaled magnitude*/

Benchmark Information:

FFTSize C-Callable ASM
32 1316 cycles
64 2676 cycles
128 5396 cycles
256 10836 cycles

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

Note: The magnitude calculation calls the sqgrt function within the runtime-support library.
The magnitude function has not been optimized at this time.

©Texas Instruments Inc., 2007-2008 Beta 1 16

RFFT_f32_phase Single-Precision Real Fast Fourier Transform Phase

Description This module computes FFT Phase.
Header File FPU.h
Declaration VOID RFFT_f32_phase (RFFT_F32_STRUCT *)
Usage A pointer to the following structure is passed to the RFFT_f32_phase
function:
typedef struct {
float32 *InBuf;
float32 *QutBuf;
float32 *CosSinBuf;
float32 *MagBuf;
float32 *PhaseBuf;
Uintlo6 FFTSize;
Uintlo6 FFTStages;
} REFT_F32_STRUCT;
ltem Description Format Comment
InBuf Input data Pointer to 32-bit | Not used
float array
OutBuf Output buffer Pointer to 32-bit | Result of RFFT_f32 or RFFT_f32u. Used as
float array the input to magnitude and phase.
CosSinBuf | Twiddle Pointer to 32-bit | Not used.
factors float array
FFTSize FFT Size Uint16 Must be a power of 2 greater than or equal to
32.
FFTStage | Number of Uint16 Stages = log2(FFTSize)

stages

MagBuf Magnitude

Pointer to 32-bit Not used.

buffer float array
PhaseBuf | Phase Pointer to 32-bit | Output from the phase calculation. FFTSize/2
float array in length.

©Texas Instruments Inc., 2007-2008 Beta 1 17

The following sample code obtains the FFT phase.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */
#define FFT_STAGES 7 /* In(FFT_SIZE)/1n(2) */
/* Align the INBUF section to 2*FFT_SIZE in the linker file */
#pragma DATA_SECTION (Inbuf, "INBUF");

float32 InBuffer [FFT_SIZE];

float32 OutBuffer [FFT_SIZE];

float32 TwiddleBuffer [FFT_SIZE];

float32 PhaseBuffer [FFT_SIZE/2];

RFFT_F32_STRUCT fft;

main ()

{
fft.InBuf = InBuffer; /* Input data buffer */
fft.OutBuf = OutBuffer; /* FFT output buffer */
fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer */
fft.FFTSize = FFT_SIZE; /* FFT length */
fft.FFTStages = FFT_STAGES; /* FFT Stages */
fft.PhaseBuf = Phasebuffer /* Phase buffer */

RFFT_f32 sincostable(&fft) /* Initialize twiddle buffer */
RFFT_f32(&fft); /* Calculate FFT output */
RFFT_f32_phase (&fft) /* Calculate phase */

}

Benchmark Information:

FFTSize C-Callable ASM
32 9759 cycles
64 19830 cycles
128 33949 cycles
256 80225 cycles

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

Note: The phase function calls the atan2 function in the runtime-support library.
The phase function has not been optimized at this time.

©Texas Instruments Inc., 2007-2008 Beta 1 18

RFFT_f32_sincostable Single-Precision Real Fast Fourier Transform Twiddle Factors

Description This module generates the twiddle factors used by the real FFT.
Header File FPU.h
Declaration VOID RFFT_f32_sincostable (RFFT_F32_STRUCT *)
Usage A pointer to the following structure is passed to the
RFFT_f32_sincostable function:
typedef struct {
float32 *InBuf;
float32 *QutBuf;
float32 *CosSinBuf;
float32 *MagBuf;
float32 *PhaseBuf;
Uintlo6 FFTSize;
Uintl6 FFTStages;
} REFT_F32_STRUCT;
ltem Description Format Comment
Inbuf Input data Pointer to 32-bit float | Not used
array
Outbuf Output buffer Pointer to 32-bit float | Not used
array
CosSinbuf | Twiddle factors | Pointer to 32-bit float | Output of the twiddle factor generation.
array
FFTSize FFT Size Uint16 Must be a power of 2 greater than or
equal to 32.
FFTStage | Number of Uint16 Stages = In(FFTsize)/In(2)
stages
MagBuf Magnitude Pointer to 32-bit float | Not used.
buffer array
PhaseBuf | Phase Pointer to 32-bit float | Not used
array

©Texas Instruments Inc., 2007-2008 Beta 1

19

The following sample code obtains the FFT using the twiddle factors..

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */
#define FFT_STAGES 7 /* 1In(FFT_SIZE)/1n(2) */
/* Align the INBUF section to 2*FFT_SIZE in the linker file */
#pragma DATA_SECTION (Inbuf, "INBUF");

float32 Inbuffer [FFT_SIZE];

float32 Outbuffer [FFT_SIZE];

float32 Twiddlebuf [FFT_SIZE];

RFFT_F32_STRUCT fft;

main ()

{
fft.InBuf = Inbuffer; /* Input data buffer */
fft.OutBuf = Outbuffer; /* FFT output buffer */
fft.CosSinBuf = Twiddlebuf; /* Twiddle factor buffer */
fft .FFTSize = FFT_SIZE; /* FFT length */
fft.FFTStages = FFT_STAGES; /* FFT Stages */

RFFT_f32 sincostable(&fft) /* Initialize Twiddle Buffer*/
REFT_f32(&fft); /* Calculate FFT output */
}

Benchmark Information:

The RFFT_f32_cossintable function is written in C and not optimized.

©Texas Instruments Inc., 2007-2008 Beta 1 20

5.Revision History

Beta 1 — January 7, 2008

e First release. Includes the real FFT and supporting functions.

©Texas Instruments Inc., 2007-2008 Beta 1 21

