
Texas Instruments Inc., 2007-2008 Beta 1 1

C28x Floating Point Unit Library

Module User’s Guide

C28x Foundation Software

V1.00 Beta 1

January 7, 2008

Texas Instruments Inc., 2007-2008 Beta 1 2

 IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or
to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is
current and complete. All products are sold subject to the terms and conditions of sale supplied at
the time of order acknowledgement, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time
of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such products or services might be or are used. TI’s
publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is
without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible or liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters
stated by TI for that products or service voids all express and any implied warranties for the
associated TI product or service, is an unfair and deceptive business practice, and TI is not
responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

Texas Instruments Inc., 2007-2008 Beta 1 3

Contents

1. Introduction___ 4

2. Installing the Library___ 4

2.1. Where the Files are Located (Directory Structure) _________________ 4

2.2. Build options used to build the library ____________________________ 4

2.3. Header Files __ 5

2.4. A note about C functions and IQMath _____________________________ 5

3. Function Summary __ 6

3.1. FPU Function Summary ___ 6

4. Function Descriptions ___ 7

RFFT_f32 ___ 8

RFFT_f32u ___ 11

RFFT_f32_mag ___ 13

RFFT_f32s_mag __ 15

RFFT_f32_phase__ 17

RFFT_f32_sincostable __ 19

5. Revision History ___ 21

Beta 1 – January 7, 2008 __ 21

Trademarks

TMS320 is the trademark of Texas Instruments Incorporated.

Code Composer Studio is a trademark of Texas Instruments Incorporated.

All other trademark mentioned herein is property of their respective companies

Texas Instruments Inc., 2007-2008 Beta 1 4

1. Introduction

The Texas Instruments TMS320C28x Floating Point Unit (FPU) Library is collection of highly
optimized application functions written for the C28x+FPU. These functions enable C/C++
programmers to take full advantage of the performance potential of the C28x+FPU. This
document provides a description of each function included within the library.

Note:

The first release of the library contains an optimized real FFT algorithm. Future releases
will include additional highly optimized algorithms.

2. Installing the Library

2.1. Where the Files are Located (Directory Structure)

As installed, the C28x FPU Library is partitioned into a well-defined directory structure. By
default, the library and source code is installed into the c:\tidcs\c28\C28x_FPU_Lib\<version>
directory. Table 1 describes the contents of the main directories used by library:

Table 1. C28x FPU Library Directory Structure

Directory Description

<base> Base install directory. By default this is
c:\tidcs\c28\C28x_FPU_Lib\beta1 For the rest of this document <base>
will be omitted from the directory names.

<base>\doc Documentation including the revision history from the previous release.

<base>\lib The built library.

<base>\include Include files for the library functions. These include function prototypes
and structure definitions.

<base>\source Source files for the library. This also includes a Code Composer Studio
project that can be used to re-build the library if required.

2.2. Build options used to build the library

The beta1 library is built with C28x codegen tools V5.0 Beta3 with the following options:

-g -o3 -d"_DEBUG" -d"LARGE_MODEL" -ml -v28 --float_support=fpu32

Texas Instruments Inc., 2007-2008 Beta 1 5

2.3. Header Files

A library header file is supplied in the <base>/include folder. This file contains structure
definitions and function prototypes. The header file also includes the C28x data type
definitions shown below:

#ifndef DSP28_DATA_TYPES

#define DSP28_DATA_TYPES

typedef int int16;

typedef long int32;

typedef long long int64;

typedef unsigned int Uint16;

typedef unsigned long Uint32;

typedef unsigned long long Uint64;

typedef float float32;

typedef long double float64;

#endif

2.4. A note about C functions and IQMath

Most of the functions contained in the C28x FPU library are c-callable assembly. A few
functions may be written in C. These C functions are written using the IQMath pre-processor
notation. This allows these functions to be easily ported from fixed point to floating-point
math. The included IQMath header file, IQmathLib.h, controls whether the code is built for
fixed point or floating-point.

In this installation, the file IQmathLib.h file is configured to generate floating-point code. i.e.
the MATH_TYPE in the file is defined as FLOAT_MATH. For more information on the
IQMath notation, please refer to C28x™ IQMath Library - A Virtual Floating Point Engine
(SPRC087) which can be downloaded from TI’s website.

Texas Instruments Inc., 2007-2008 Beta 1 6

3. Function Summary

3.1. FPU Function Summary

This release is for the real FFT function. Other functions will be added in future releases.

Description Prototype

Matrix and Vector Functions

 Coming in a future release
DSP Functions

RFFT_f32 void RFFT_f32(RFFT_F32_STRUCT *);

RFFT_f32u void RFFT_f32u(RFFT_F32_STRUCT *);

RFFT_f32_mag void RFFT_f32_mag(RFFT_F32_STRUCT *);

RFFT_f32s_mag void RFFT_f32s_mag(RFFT_F32_STRUCT *);

RFFT_f32_phase void RFFT_f32_phase(RFFT_F32_STRUCT *);

RFFT_f32_sincostable void RFFT_f32_sincostable(RFFT_F32_STRUCT *);
Filter Functions

 Coming in a future release

Texas Instruments Inc., 2007-2008 Beta 1 7

4. Function Descriptions

Texas Instruments Inc., 2007-2008 Beta 1 8

RFFT_f32 Single-Precision Real Fast Fourier Transform

Description This module computes a 32-bit floating-point real FFT including input bit

reversing. This version of the function requires input buffer memory alignment. If
you do not wish to align the input buffer, then use the RFFT_f32u function.

Header File FPU.h

Declaration VOID RFFT_f32 (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32 function:

 typedef struct {

 float32 *InBuf;

 float32 *OutBuf;

 float32 *CosSinBuf;

 float32 *MagBuf;

 float32 *PhaseBuf;

 Uint16 FFTSize;

 Uint16 FFTStages;

 } RFFT_F32_STRUCT;

Item Description Format Comment

InBuf Input data Pointer to 32-
bit float array

Input buffer alignment is required. Refer to
the alignment section.

OutBuf

Output buffer Pointer to 32-
bit float array

Result of RFFT_f32. This buffer is used as
the input to the magnitude and phase
calculations. The output order for FFTSize
= N is:
 OutBuf[0] = real[0]

 OutBuf[1] = real[1]

 OutBuf[2] = real[2]

 ………

 OutBuf[N/2] = real[N/2]

 OutBuf[N/2+1] = imag[N/2-1]

 ………

 OutBuf[N-3] = imag[3]

 OutBuf[N-2] = imag[2]

 OutBuf[N-1] = imag[1]

CosSinBuf

Twiddle factors Pointer to 32-
bit float array

Calculate using RFFT_f32_sincostable().

FFTSize

FFT size Uint16 Must be a power of 2 greater than or equal
to 32.

FFTStages Number of stages Uint16 Stages = log2(FFTSize)

MagBuf Magnitude buffer Pointer to 32-
bit float array

Not used.

PhaseBuf Phase buffer Pointer to 32-
bit float array

Not used.

Texas Instruments Inc., 2007-2008 Beta 1 9

Alignment Requirements:

The input buffer must be aligned to a multiple of the 2*FFTSize. For example, if the
FFTSize is 128 you must align the buffer corresponding to InBuf to 2*128 = 256. An
alignment to 64 will not work for a 128 FFT.

To align the input buffer, use the DATA_SECTION pragma to assign the buffer to a code
section and then align the buffer to the proper offset in the linker command file. In this
code example the buffer is assigned to the INBUF section.

#define FFT_SIZE 128

#pragma DATA_SECTION(Inbuffer, "INBUF");

float32 Inbuffer [N];

In the project’s linker command file, the INBUF section is then aligned to a multiple of the
FFTSize as shown below:

INBUF ALIGN(256) : { } > RAML6 PAGE 1

Note:

If the input buffer is not properly aligned, then the output will be unpredictable.

Note:

If you do not wish to align the input buffer, then you must use the RFFT_f32u
function. This version of the function does not have any input buffer alignment
requirements. Using RFFT_f32u will, however, result in a lower cycle performance.

Example: The following sample code obtains the FFT of the real input.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */

#define FFT_STAGES 7 /* log2(FFT_SIZE) */

/* Align the INBUF section to 2*FFT_SIZE in the linker file */

#pragma DATA_SECTION(Inbuf, "INBUF");

float32 InBuffer[FFT_SIZE];

float32 OutBuffer[FFT_SIZE];

 float32 TwiddleBuffer[FFT_SIZE];

RFFT_F32_STRUCT fft;

main()

{

 fft.InBuf = InBuffer; /* Input data buffer */

 fft.OutBuf = OutBuffer; /* FFT output buffer */

 fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer */

 fft.FFTSize = FFT_SIZE; /* FFT length */

 fft.FFTStages = FFT_STAGES; /* FFT Stages */

 …………………

 RFFT_f32_sincostable(&fft) /* Initialize twiddle buffer */

 RFFT_f32(&fft); /* Calculate output */

}

Texas Instruments Inc., 2007-2008 Beta 1 10

Benchmark Information:

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

FFTSize C-Callable ASM

32 608 cycles

64 1278 cycles

128 2784 cycles

256 6170 cycles

512 13672 cycles

Texas Instruments Inc., 2007-2008 Beta 1 11

RFFT_f32u Single-Precision Real Fast Fourier Transform

Description This module computes a 32-bit floating-point real FFT including input bit

reversing. This version of the function does not have any buffer alignment
requirements. If you can align the input buffer, then use the RFFT_f32 function
for improved performance.

Header File FPU.h

Declaration VOID RFFT_f32u (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32 function:

 typedef struct {

 float32 *InBuf;

 float32 *OutBuf;

 float32 *CosSinBuf;

 float32 *MagBuf;

 float32 *PhaseBuf;

 Uint16 FFTSize;

 Uint16 FFTStages;

 } RFFT_F32_STRUCT;

Item Description Format Comment

InBuf Input data Pointer to 32-
bit float array

Input data. No alignment is required.

OutBuf

Output
buffer

Pointer to 32-
bit float array

Result of RFFT_f32u. This buffer is used as the
input to the magnitude and phase calculations.
The output order for FFTSize = N is:

OutBuf[0] = real[0]

OutBuf[1] = real[1]

OutBuf[2] = real[2]

………

OutBuf[N/2] = real[N/2]

OutBuf[N/2-1] = imag[N/2]

………

OutBuf[N-3] = imag[3]

OutBuf[N-2] = imag[2]

OutBuf[N-1] = imag[1]

CosSinBuf

Twiddle
factors

Pointer to 32-
bit float array

Calculate using RFFT_f32_sincostable().

FFTSize

FFT Size Uint16 Must be a power of 2 greater than or equal to 32.

FFTStages Number of
stages

Uint16 Stages = log2(FFTSize)

MagBuf Magnitude
buffer

Pointer to 32-
bit float array

Not used.

PhaseBuf Phase Pointer to 32-
bit float array

Not used.

Texas Instruments Inc., 2007-2008 Beta 1 12

Note:

If you can align the input buffer to a 2*FFTSize, then consider using the RFFT_f32
function. This version of the function has input buffer alignment requirements, but
it is more cycle efficient

Example: The following sample code obtains the FFT of the real input.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */

#define FFT_STAGES 7 /* log2(FFT_SIZE) */

float32 InBuffer[FFT_SIZE];

float32 OutBuffer[FFT_SIZE];

 float32 TwiddleBuffer[FFT_SIZE];

RFFT_F32_STRUCT fft;

main()

{

 fft.InBuf = InBuffer; /* Input Buffer */

 fft.OutBuf = OutBuffer; /* FFT Output Buffer */

 fft.CosSinBuf = TwiddleBuffer;/* Twiddle Buffer */

 fft.FFTSize = FFT_SIZE; /* FFT length */

 fft.FFTStages = FFT_STAGES; /* FFT Stages */

 …………………

 RFFT_f32_sincostable(&fft) /* Initialize twiddle buffer */

 RFFT_f32u(&fft); /* Calculate output */

}

Benchmark Information:

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

FFTSize C-Callable ASM

32 664 cycles

64 1390 cycles

128 3008 cycles

256 6618 cycles

512 14568 cycles

Texas Instruments Inc., 2007-2008 Beta 1 13

RFFT_f32_mag Single-Precision Real Fast Fourier Transform Magnitude

Description This module computes the real FFT magnitude. The output from

RFFT_f32_mag matches the magnitude output from the FFT found in
common mathematics software and Code Composer Studio FFT graphs.

` If instead a normalized magnitude like that performed by the fixed-point

TMS320C28x IQmath FFT library is required, then the RFFT_f32s_mag
function can be used. In fixed-point algorithms scaling is performed to
avoid overflowing data. Floating-point calculations do not need this
scaling to avoid overflow and therefore the RFFT_f32_mag function can
be used instead.

Header File FPU.h

Declaration VOID RFFT_f32_mag (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32_mag
function:

 typedef struct {

 float32 *InBuf;

 float32 *OutBuf;

 float32 *CosSinBuf;

 float32 *MagBuf;

 float32 *PhaseBuf;

 Uint16 FFTSize;

 Uint16 FFTStages;

 } RFFT_F32_STRUCT;

Item Description Format Comment

InBuf Input data Pointer to 32-bit
float array

Not used.

OutBuf

Output buffer Pointer to 32-bit
float array

Result of RFFT_f32 or RFFT_f32u. Used as
the input to magnitude and phase.

CosSinBuf

Twiddle
factors

Pointer to 32-bit
float array

Not used.

FFTSize

FFT size Uint16 Must be a power of 2 greater than or equal to
32.

FFTStages Number of
stages

Uint16 Stages = log2(FFTSize)

MagBuf Magnitude
buffer

Pointer to 32-bit
float array

Output from the magnitude calculation.
FFTSize/2 in length.

PhaseBuf Phase Pointer to 32-bit
float array

Not used.

Texas Instruments Inc., 2007-2008 Beta 1 14

The following sample code obtains the FFT magnitude.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */

#define FFT_STAGES 7 /* log2(FFT_SIZE) */

/* Align the INBUF section to 2*FFT_SIZE in the linker file */

#pragma DATA_SECTION(Inbuf, "INBUF");

float32 InBuffer[FFT_SIZE];

float32 OutBuffer[FFT_SIZE];

 float32 TwiddleBuffer[FFT_SIZE];

 float32 MagBuffer[FFT_SIZE/2];

RFFT_F32_STRUCT fft;

main()

{

 fft.InBuf = InBuffer; /* Input data buffer */

 fft.OutBuf = OutBuffer; /* FFT output buffer */

 fft.CosSinBuf = TwiddleBuffer; /* Twiddle factor buffer */

 fft.FFTSize = FFT_SIZE; /* FFT length */

 fft.FFTStages = FFT_STAGES; /* FFT Stages */

 fft.MagBuf = MagBuffer; /* Magnitude buffer */

 …………………

 RFFT_f32_sincostable(&fft) /* Initialize Twiddle Buffer */

 RFFT_f32(&fft); /* Calculate output */

 RFFT_f32_mag(&fft) /* Calculate magnitude */

}

Benchmark Information:

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

Note: The magnitude calculation calls the sqrt function within the runtime-support library.
The magnitude function has not been optimized at this time.

FFTSize C-Callable ASM

32 1301 cycles

64 2645 cycles

128 5333 cycles

256 10709 cycles

512 21462 cycles

Texas Instruments Inc., 2007-2008 Beta 1 15

RFFT_f32s_mag Single-Precision Real Fast Fourier Transform Magnitude

Description This module computes the scaled real FFT magnitude. The scaling is

1/[2^(FFT_STAGES-1)], and is done to match the normalization
performed by the fixed-point TMS320C28x IQmath FFT library for
overflow avoidance. Floating-point calculations do not need this scaling
to avoid overflow and therefore the RFFT_f32_mag function can be used
instead. The output from RFFT_f32_mag matches the magnitude output
from the FFT found in common mathematics software and Code
Composer Studio FFT graphs.

Header File FPU.h

Declaration VOID RFFT_f32s_mag (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32_mag
function:

 typedef struct {

 float32 *InBuf;

 float32 *OutBuf;

 float32 *CosSinBuf;

 float32 *MagBuf;

 float32 *PhaseBuf;

 Uint16 FFTSize;

 Uint16 FFTStages;

 } RFFT_F32_STRUCT;

Item Description Format Comment

InBuf Input data Pointer to 32-bit float
array

Not used.

OutBuf

Output
buffer

Pointer to 32-bit float
array

Result of RFFT_f32 or RFFT_f32u. Used
as the input to magnitude and phase.

CosSinBuf

Twiddle
factors

Pointer to 32-bit float
array

Not used.

FFTSize

FFT size Uint16 Must be a power of 2 greater than or equal
to 32.

FFTStages Number of
stages

Uint16 Stages = log2(FFTSize)

MagBuf Magnitude
buffer

Pointer to 32-bit float
array

Output from the magnitude calculation.
FFTSize/2 in length.

PhaseBuf Phase Pointer to 32-bit float
array

Not used.

Texas Instruments Inc., 2007-2008 Beta 1 16

The following sample code obtains the scaled FFT magnitude.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */

#define FFT_STAGES 7 /* log2(FFT_SIZE) */

/* Align the INBUF section to 2*FFT_SIZE in the linker file */

#pragma DATA_SECTION(Inbuf, "INBUF");

float32 InBuffer[FFT_SIZE];

float32 OutBuffer[FFT_SIZE];

 float32 TwiddleBuffer[FFT_SIZE];

 float32 MagBuffer[FFT_SIZE/2];

RFFT_F32_STRUCT fft;

main()

{

 fft.InBuf = InBuffer; /* Input data buffer */

 fft.OutBuf = OutBuffer; /* FFT output buffer */

 fft.CosSinBuf = TwiddleBuffer; /* Twiddle factor buffer */

 fft.FFTSize = FFT_SIZE; /* FFT length */

 fft.FFTStages = FFT_STAGES; /* FFT Stages */

 fft.MagBuf = MagBuffer; /* Magnitude buffer */

 …………………

 RFFT_f32_sincostable(&fft) /* Initialize twiddle buffer */

 RFFT_f32(&fft); /* Calculate FFT output */

 RFFT_f32s_mag(&fft) /* Calculate scaled magnitude*/

}

Benchmark Information:

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

Note: The magnitude calculation calls the sqrt function within the runtime-support library.
The magnitude function has not been optimized at this time.

FFTSize C-Callable ASM

32 1316 cycles

64 2676 cycles

128 5396 cycles

256 10836 cycles

Texas Instruments Inc., 2007-2008 Beta 1 17

RFFT_f32_phase Single-Precision Real Fast Fourier Transform Phase

Description This module computes FFT Phase.

Header File FPU.h

Declaration VOID RFFT_f32_phase (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the RFFT_f32_phase

function:

 typedef struct {

 float32 *InBuf;

 float32 *OutBuf;

 float32 *CosSinBuf;

 float32 *MagBuf;

 float32 *PhaseBuf;

 Uint16 FFTSize;

 Uint16 FFTStages;

 } RFFT_F32_STRUCT;

Item Description Format Comment

InBuf Input data Pointer to 32-bit
float array

Not used

OutBuf

Output buffer Pointer to 32-bit
float array

Result of RFFT_f32 or RFFT_f32u. Used as
the input to magnitude and phase.

CosSinBuf Twiddle
factors

Pointer to 32-bit
float array

Not used.

FFTSize

FFT Size Uint16 Must be a power of 2 greater than or equal to
32.

FFTStage Number of
stages

Uint16 Stages = log2(FFTSize)

MagBuf Magnitude
buffer

Pointer to 32-bit
float array

Not used.

PhaseBuf Phase Pointer to 32-bit
float array

Output from the phase calculation. FFTSize/2
in length.

Texas Instruments Inc., 2007-2008 Beta 1 18

The following sample code obtains the FFT phase.

#include FPU.h

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */

#define FFT_STAGES 7 /* ln(FFT_SIZE)/ln(2) */

/* Align the INBUF section to 2*FFT_SIZE in the linker file */

#pragma DATA_SECTION(Inbuf, "INBUF");

float32 InBuffer[FFT_SIZE];

float32 OutBuffer[FFT_SIZE];

 float32 TwiddleBuffer[FFT_SIZE];

 float32 PhaseBuffer[FFT_SIZE/2];

RFFT_F32_STRUCT fft;

main()

{

 fft.InBuf = InBuffer; /* Input data buffer */

 fft.OutBuf = OutBuffer; /* FFT output buffer */

 fft.CosSinBuf = TwiddleBuffer;/* Twiddle factor buffer */

 fft.FFTSize = FFT_SIZE; /* FFT length */

 fft.FFTStages = FFT_STAGES; /* FFT Stages */

 fft.PhaseBuf = Phasebuffer /* Phase buffer */

 …………………

 RFFT_f32_sincostable(&fft) /* Initialize twiddle buffer */

 RFFT_f32(&fft); /* Calculate FFT output */

 RFFT_f32_phase(&fft) /* Calculate phase */

}

Benchmark Information:

Note: All buffers and stack are placed in internal memory (zero-wait states in data space).

Note: The phase function calls the atan2 function in the runtime-support library.

The phase function has not been optimized at this time.

FFTSize C-Callable ASM

32 9759 cycles

64 19830 cycles

128 33949 cycles

256 80225 cycles

Texas Instruments Inc., 2007-2008 Beta 1 19

RFFT_f32_sincostable Single-Precision Real Fast Fourier Transform Twiddle Factors

Description This module generates the twiddle factors used by the real FFT.

Header File FPU.h

Declaration VOID RFFT_f32_sincostable (RFFT_F32_STRUCT *)

Usage A pointer to the following structure is passed to the

RFFT_f32_sincostable function:

 typedef struct {

 float32 *InBuf;

 float32 *OutBuf;

 float32 *CosSinBuf;

 float32 *MagBuf;

 float32 *PhaseBuf;

 Uint16 FFTSize;

 Uint16 FFTStages;

 } RFFT_F32_STRUCT;

Item Description Format Comment

Inbuf Input data Pointer to 32-bit float
array

Not used

Outbuf

Output buffer Pointer to 32-bit float
array

Not used

CosSinbuf Twiddle factors Pointer to 32-bit float
array

Output of the twiddle factor generation.

FFTSize

FFT Size Uint16 Must be a power of 2 greater than or
equal to 32.

FFTStage Number of
stages

Uint16 Stages = ln(FFTsize)/ln(2)

MagBuf Magnitude
buffer

Pointer to 32-bit float
array

Not used.

PhaseBuf Phase Pointer to 32-bit float
array

Not used

Texas Instruments Inc., 2007-2008 Beta 1 20

The following sample code obtains the FFT using the twiddle factors..

#define FFT_SIZE 128 /* 32, 64, 128, 256, etc */

#define FFT_STAGES 7 /* ln(FFT_SIZE)/ln(2) */

/* Align the INBUF section to 2*FFT_SIZE in the linker file */
#pragma DATA_SECTION(Inbuf, "INBUF");

float32 Inbuffer[FFT_SIZE];

float32 Outbuffer[FFT_SIZE];

 float32 Twiddlebuf[FFT_SIZE];

RFFT_F32_STRUCT fft;

main()

{

 fft.InBuf = Inbuffer; /* Input data buffer */

 fft.OutBuf = Outbuffer; /* FFT output buffer */

 fft.CosSinBuf = Twiddlebuf; /* Twiddle factor buffer */

 fft.FFTSize = FFT_SIZE; /* FFT length */

 fft.FFTStages = FFT_STAGES; /* FFT Stages */

 …………………

 RFFT_f32_sincostable(&fft) /* Initialize Twiddle Buffer*/

 RFFT_f32(&fft); /* Calculate FFT output */

}

Benchmark Information:

The RFFT_f32_cossintable function is written in C and not optimized.

Texas Instruments Inc., 2007-2008 Beta 1 21

5. Revision History

Beta 1 – January 7, 2008
• First release. Includes the real FFT and supporting functions.

